An introduction to non-convex analysis of Robust PCA

Praneeth K Narayanamurthy

pkurpadn@iastate.edu

November 28, 2016

Praneeth K Narayanamurthy

Non-Convex RPCA

Iowa State University

Overview

- Problem motivation
 - Classical Principal Components analysis (PCA)
 - Robust PCA
- Convex solution
- Non-convex solution
- Convex vs Non-Convex solutions
- Analysis of non-convex solution
- Simulation Results

- Given: Data $\mathbf{x}_i \in \mathbb{R}^n$, $i = 1, 2, \cdots, m$.
- Assumption: \mathbf{x}_i lie in low-dimensional space, \mathbb{R}^k where $k \ll n$.
- **Goal:** Estimate the *k*-dimensional subspace.
- Define

$$\mathbf{X} = \begin{bmatrix} -\mathbf{x}_1^T - \\ -\mathbf{x}_2^T - \\ \vdots \\ -\mathbf{x}_m^T - \end{bmatrix}$$

3/1

Non-Convex RPCA

Classical Principal Components analysis (PCA)

• Input: X, rank(X) = r, Output: \hat{X}

$$\hat{\mathbf{X}} = \min \|\hat{\mathbf{X}} - \mathbf{X}\|_2$$

subject to $\operatorname{rank}(\hat{\mathbf{X}}) \leq r$

- Non-Convex Problem; but efficient algorithm to compute exact solution exists.
- Algorithm: Return the top r left singular vectors of X using Singular Value Decomposition (SVD)
 - Advantages: Guaranteed Convergence*, Numerically stable
 - Drawback: Computationally intensive (O(n²r)), Sensitive to outliers

Problem Motivation Why is PCA sensitive to outliers?

Praneeth K Narayanamurthy

Non-Convex RPCA

Iowa State University

Transition towards robust PCA

- Information Revolution Very large-scale data, but intrinsically low dimensional.
- Examples: Image/Video/Multimedia processing, Web Search engines, Recommender Systems, Bio-Informatics etc.
- Physical limitations Grossly corrupted, unreliable, missing data.
- ▶ Need for a more generic problem formulation.

Robust PCA

- ▶ Input: $\mathbf{M} = \mathbf{L}^* + \mathbf{S}^*$, Output: $\hat{\mathbf{L}}$, $\hat{\mathbf{S}}$
- $\hat{\mathbf{L}}$ is low-rank, and $\hat{\mathbf{S}}$ is sparse.
- Non-Convex problem.
- III-Posed requires additional assumptions on the structure of individual components.

Convex Solution

- Under mild-assumptions, it is possible to recover L* and S* exactly.
- Solve the following convex relaxation

 $\begin{aligned} & (\hat{\mathbf{L}}, \ \hat{\mathbf{S}}) = \text{ arg min } \|\mathbf{L}\|_* + \lambda \|\mathbf{S}\|_1 \\ & \text{subject to } & \mathbf{M} = \mathbf{L} + \mathbf{S} \end{aligned}$

 Two approaches: Random sparsity model¹ and deterministic sparsity model²

¹E. Candès et al., "Robust Principal Component Analysis?," Journal of ACM, 2011

 $^2 \rm V.$ Chadrasekaran et al., "Rank Sparsity incoherence for matrix decomposition," SIAM Journal of Optimization, 2011

Praneeth K Narayanamurthy

Non-Convex RPCA

Non-Convex Solution³

- Alternating projections on to set of low-rank and sparse matrices
- Non-convex sets but the projection can be performed efficiently using Hard-thresholding and SVD
- Gives exact recovery under mild-assumptions

(L1) Rank of **L**^{*} is at most *r*
(L2) **L**^{*} is
$$\mu$$
-incoherent, i.e., if **L**^{*} = $U^* \Sigma^* (V^*)^T$ is the SVD then
 $\|(U^*)^j\| \le \frac{\mu\sqrt{r}}{\sqrt{m}}$ and $\|(V^*)^j\| \le \frac{\mu\sqrt{r}}{\sqrt{n}} \quad \forall i, j$
(S1) Each row and column of **S**^{*} has at most α fraction of non-zero.

(S1) Each row and column of **S**^{*} has at most α fraction of non-zero entries, such that $\alpha \leq \frac{1}{512\mu^2 r}$

Praneeth K Narayanamurthy

Non-Convex RPCA

³P. Netrapalli et al., "Non-Convex Robust PCA," *NIPS*, 2014

- 1: Input: Matrix $M \in R^{m \times n}$, convergence criterion ϵ , target rank r, thresholding parameter β .
- P_k(A) denotes the best rank-k approximation of matrix A. HT_ζ(A) denotes hard-thresholding, i.e. (HT_ζ(A))_{ij} = A_{ij} if |A_{ij}| ≥ ζ and 0 otherwise.
- 3: Set initial threshold $\zeta_0 \leftarrow \beta \sigma_1(M)$.
- 4: $L^{(0)} = 0, S^{(0)} = HT_{\zeta_0}(M L^{(0)})$
- 5: for Stage k = 1 to r do
- 6: for Iteration t = 0 to $T = 10 \log \left(n\beta \|M S^{(0)}\|/\epsilon \right)$ do
- 7: Set threshold ζ as

$$\zeta = \beta \left(\sigma_{k+1}(M-S) + \left(\frac{1}{2}\right)^t \sigma_k(M-S) \right)$$

 $L^{(t+1)} = P_k(M - S^{(t)})$ 8: $S^{(t+1)} = HT_{c}(M - L^{(t+1)})$ Q٠ end for 10. if $\beta \sigma_{k+1}(L) < \frac{\epsilon}{2n}$ then 11: **Return:** $L^{(T)}$, $S^{(T)}$ /* Return rank-k estimate if remaining part has small 12. norm */ else 13: $\varsigma(0) = \varsigma(T)$ /* Continue to the next stage */ 14: 15: end if 16: end for 17: Return: $L^{(T)}, S^{(T)}$

10/1

Non-Convex RPCA

Convex vs. Non-Convex solutions

Algorithm	PCA*	Convex	Non-Convex
Run Time (per iteration)	$\mathcal{O}(rmn)$	$\mathcal{O}(m^2n)$	$\mathcal{O}(r^2mn)$
# iterations	$\mathcal{O}(\log(1/\epsilon))$	$\mathcal{O}(1/\epsilon)$	$\mathcal{O}(\log(1/\epsilon))$

 Above comparisons are for similar assumptions on sparsity and incoherence in convex and non-convex solutions.

*Using the power method

11/1

Praneeth K Narayanamurthy

Analysis of non-convex solution

Theorem: Under conditions (L1), (L2), and (S1), and the choice of β as above, the outputs L and S of Algorithm satisfy:

$$\|\hat{L} - L^*\|_F \le \epsilon, \ \|\hat{S} - S^*\|_{\infty} \le \frac{\epsilon}{\sqrt{nm}}, \ \operatorname{supp}(\hat{S}) \subseteq \operatorname{supp}(S^*)$$

- Proof outline
 - 1. Reduce the problem to symmetric case, maintaining the assumptions
 - 2. Show decay in $||L L^*||_{\infty}$ after projection onto set of rank-*k* matrices.
 - 3. Show decay in $\|S-S^*\|_\infty$ after projection onto set of sparse matrices
 - 4. Recurse the argument.

Analysis of non-convex solution

Some key ideas

- Incoherence, sparsity assumption on the symmetrized versions (Remark)
- Fixed-point convergence characterization of eigenvalues of error term (Lemma 7)
- Counting *p*-hops on sparse graphs. (Lemma 5)

Simulation Results

Simulation conditions

- ▶ *m* = 256, *n* = 256.
- Generated supp(S^*) uniformly at random with probability $p = 0.9 \implies \approx 6000$ non zero entries.
- ► *T* is the maximum of 50, value obtained by the formula given in Algorithm 1.

Simulation Results

15/1 Iowa State University

Praneeth K Narayanamurthy

Non-Convex RPCA

Thank you.

Praneeth K Narayanamurthy

Non-Convex RPCA

Iowa State University