An introduction to non-convex analysis of Robust PCA

Praneeth K Narayanamurthy

pkurpadn@iastate.edu

November 28, 2016

Overview

- Problem motivation
- Classical Principal Components analysis (PCA)
- Robust PCA
- Convex solution
- Non-convex solution
- Convex vs Non-Convex solutions
- Analysis of non-convex solution
- Simulation Results

Problem Motivation

- Given: Data $\mathbf{x}_{i} \in \mathbb{R}^{n}, i=1,2, \cdots, m$.
- Assumption: \mathbf{x}_{i} lie in low-dimensional space, \mathbb{R}^{k} where $k \ll n$.
- Goal: Estimate the k-dimensional subspace.
- Define

$$
\mathbf{X}=\left[\begin{array}{c}
-\mathbf{x}_{1}^{T}- \\
-\mathbf{x}_{2}^{T}- \\
\vdots \\
-\mathbf{x}_{m}^{T}-
\end{array}\right]
$$

Problem Motivation

Classical Principal Components analysis (PCA)

- Input: X, $\operatorname{rank}(\mathbf{X})=r$, Output: $\hat{\mathbf{X}}$

$$
\begin{array}{cl}
\hat{\mathbf{X}}=\min & \|\hat{\mathbf{X}}-\mathbf{X}\|_{2} \\
\text { subject to } & \operatorname{rank}(\hat{\mathbf{X}}) \leq r
\end{array}
$$

- Non-Convex Problem; but efficient algorithm to compute exact solution exists.
- Algorithm: Return the top r left singular vectors of \mathbf{X} using Singular Value Decomposition (SVD)
- Advantages: Guaranteed Convergence*, Numerically stable
- Drawback: Computationally intensive $\left(\mathcal{O}\left(n^{2} r\right)\right)$, Sensitive to outliers

Problem Motivation

Why is PCA sensitive to outliers?

Sparse, uniform noise

Problem Motivation

Transition towards robust PCA

- Information Revolution - Very large-scale data, but intrinsically low dimensional.
- Examples: Image/Video/Multimedia processing, Web Search engines, Recommender Systems, Bio-Informatics etc.
- Physical limitations - Grossly corrupted, unreliable, missing data.
- Need for a more generic problem formulation.

Problem Motivation

Robust PCA

- Input: $\mathbf{M}=\mathbf{L}^{*}+\mathbf{S}^{*}$, Output: $\hat{\mathbf{L}}, \hat{\mathbf{S}}$
- $\hat{\mathbf{L}}$ is low-rank, and $\hat{\mathbf{S}}$ is sparse.
- Non-Convex problem.
- III-Posed - requires additional assumptions on the structure of individual components.

Convex Solution

- Under mild-assumptions, it is possible to recover L* and S* exactly.
- Solve the following convex relaxation

$$
\begin{array}{cl}
(\hat{\mathbf{L}}, \hat{\mathbf{S}})=\arg \min & \|\mathbf{L}\|_{*}+\lambda\|\mathbf{S}\|_{1} \\
\text { subject to } & \mathbf{M}=\mathbf{L}+\mathbf{S}
\end{array}
$$

- Two approaches: Random sparsity model ${ }^{1}$ and deterministic sparsity model ${ }^{2}$

[^0]
Non-Convex Solution ${ }^{3}$

- Alternating projections on to set of low-rank and sparse matrices
- Non-convex sets but the projection can be performed efficiently using Hard-thresholding and SVD
- Gives exact recovery under mild-assumptions
(L1) Rank of \mathbf{L}^{*} is at most r
(L2) \mathbf{L}^{*} is μ-incoherent, i.e., if $\mathbf{L}^{*}=U^{*} \Sigma^{*}\left(V^{*}\right)^{T}$ is the SVD then

$$
\left\|\left(U^{*}\right)^{i}\right\| \leq \frac{\mu \sqrt{r}}{\sqrt{m}} \text { and }\left\|\left(V^{*}\right)^{j}\right\| \leq \frac{\mu \sqrt{r}}{\sqrt{n}} \forall i, j
$$

(S1) Each row and column of \mathbf{S}^{*} has at most α fraction of non-zero entries, such that $\alpha \leq \frac{1}{512 \mu^{2} r}$

Input: Matrix $M \in R^{m \times n}$, convergence criterion ϵ, target rank r, thresholding parameter β.
$P_{k}(A)$ denotes the best rank- k approximation of matrix $A . H T_{\zeta}(A)$ denotes hard-thresholding, i.e. $\left(H T_{\zeta}(A)\right)_{i j}=A_{i j}$ if $\left|A_{i j}\right| \geq \zeta$ and 0 otherwise.
Set initial threshold $\zeta_{0} \leftarrow \beta \sigma_{1}(M)$.
$L^{(0)}=0, S^{(0)}=H T_{\zeta_{0}}\left(M-L^{(0)}\right)$
for Stage $k=1$ to r do
for Iteration $t=0$ to $T=10 \log \left(n \beta\left\|M-S^{(0)}\right\| / \epsilon\right)$ do Set threshold ζ as

$$
\zeta=\beta\left(\sigma_{k+1}(M-S)+\left(\frac{1}{2}\right)^{t} \sigma_{k}(M-S)\right)
$$

$$
L^{(t+1)}=P_{k}\left(M-S^{(t)}\right)
$$

$$
S^{(t+1)}=H T_{\zeta}\left(M-L^{(t+1)}\right)
$$

end for
if $\beta \sigma_{k+1}(L)<\frac{\epsilon}{2 n}$ then
Return: $Ł^{(T)}, S^{(T)} \quad / *$ Return rank- k estimate if remaining part has small norm */
else
$S^{(0)}=S^{(T)} \quad / *$ Continue to the next stage */
end if
end for
Return: $L^{(T)}, S^{(T)}$

Convex vs. Non-Convex solutions

Algorithm	PCA *	Convex	Non-Convex
Run Time (per iteration)	$\mathcal{O}(r m n)$	$\mathcal{O}\left(m^{2} n\right)$	$\mathcal{O}\left(r^{2} m n\right)$
\# iterations	$\mathcal{O}(\log (1 / \epsilon))$	$\mathcal{O}(1 / \epsilon)$	$\mathcal{O}(\log (1 / \epsilon))$

- Above comparisons are for similar assumptions on sparsity and incoherence in convex and non-convex solutions.
*Using the power method

Analysis of non-convex solution

- Theorem: Under conditions (L1), (L2), and (S1), and the choice of β as above, the outputs \hat{L} and \hat{S} of Algorithm satisfy:

$$
\left\|\hat{L}-L^{*}\right\|_{F} \leq \epsilon,\left\|\hat{S}-S^{*}\right\|_{\infty} \leq \frac{\epsilon}{\sqrt{n m}}, \operatorname{supp}(\hat{S}) \subseteq \operatorname{supp}\left(S^{*}\right)
$$

- Proof outline

1. Reduce the problem to symmetric case, maintaining the assumptions
2. Show decay in $\left\|L-L^{*}\right\|_{\infty}$ after projection onto set of rank- k matrices.
3. Show decay in $\left\|S-S^{*}\right\|_{\infty}$ after projection onto set of sparse matrices
4. Recurse the argument.

Analysis of non-convex solution

Some key ideas

- Incoherence, sparsity assumption on the symmetrized versions (Remark)
- Fixed-point convergence characterization of eigenvalues of error term (Lemma 7)
- Counting p-hops on sparse graphs. (Lemma 5)

Simulation Results

Simulation conditions

- $m=256, n=256$.
- Generated $\operatorname{supp}\left(S^{*}\right)$ uniformly at random with probability $p=0.9 \Longrightarrow \approx 6000$ non zero entries.
- T is the maximum of 50 , value obtained by the formula given in Algorithm 1.

Simulation Results

$\operatorname{rank}(\mathrm{L})=20$

$\operatorname{rank}(\mathrm{L})=5$

$\operatorname{rank}(\mathrm{L})=50$

$\operatorname{rank}(\mathrm{L})=150$

$\operatorname{rank}(\mathrm{L})=10$

$\operatorname{rank}(\mathrm{L})=75$

Thank you.

[^0]: ${ }^{1}$ E. Candès et al., "Robust Principal Component Analysis?," Journal of ACM, 2011
 ${ }^{2}$ V. Chadrasekaran et al., "Rank Sparsity incoherence for matrix decomposition," SIAM Journal of Optimization, 2011

