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Overview

I Problem motivation
I Classical Principal Components analysis (PCA)
I Robust PCA

I Convex solution

I Non-convex solution

I Convex vs Non-Convex solutions

I Analysis of non-convex solution

I Simulation Results
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Problem Motivation

I Given: Data xi ∈ Rn, i = 1, 2, · · · , m.

I Assumption: xi lie in low-dimensional space, Rk where
k � n.

I Goal: Estimate the k-dimensional subspace.

I Define

X =


−xT1 −
−xT2 −

...
−xTm−
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Problem Motivation

Classical Principal Components analysis (PCA)

I Input: X, rank(X) = r , Output: X̂

X̂ = min ‖X̂− X‖2

subject to rank(X̂) ≤ r

I Non-Convex Problem; but efficient algorithm to compute
exact solution exists.

I Algorithm: Return the top r left singular vectors of X –
using Singular Value Decomposition (SVD)

I Advantages: Guaranteed Convergence∗, Numerically stable
I Drawback: Computationally intensive (O(n2r)), Sensitive to

outliers
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Problem Motivation
Why is PCA sensitive to outliers?
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Problem Motivation

Transition towards robust PCA

I Information Revolution – Very large-scale data, but
intrinsically low dimensional.

I Examples: Image/Video/Multimedia processing, Web
Search engines, Recommender Systems, Bio-Informatics
etc.

I Physical limitations – Grossly corrupted, unreliable,
missing data.

I Need for a more generic problem formulation.
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Problem Motivation

Robust PCA

I Input: M = L∗ + S∗, Output: L̂, Ŝ

I L̂ is low-rank, and Ŝ is sparse.

I Non-Convex problem.

I Ill-Posed – requires additional assumptions on the
structure of individual components.
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Convex Solution

I Under mild-assumptions, it is possible to recover L∗ and S∗

exactly.

I Solve the following convex relaxation

I

(L̂, Ŝ) = arg min ‖L‖∗ + λ‖S‖1

subject to M = L + S

I Two approaches: Random sparsity model1 and deterministic
sparsity model2

1
E. Candès et al., “Robust Principal Component Analysis?,” Journal of ACM, 2011

2
V. Chadrasekaran et al., “Rank Sparsity incoherence for matrix decomposition,” SIAM Journal of

Optimization, 2011
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Non-Convex Solution3

I Alternating projections on to set of low-rank and sparse
matrices

I Non-convex sets but the projection can be performed
efficiently using Hard-thresholding and SVD

I Gives exact recovery under mild-assumptions

(L1) Rank of L∗ is at most r
(L2) L∗ is µ-incoherent, i.e., if L∗ = U∗Σ∗(V ∗)T is the SVD then

‖(U∗)i‖ ≤ µ
√
r√

m
and ‖(V ∗)j‖ ≤ µ

√
r√
n
∀i , j

(S1) Each row and column of S∗ has at most α fraction of non-zero
entries, such that α ≤ 1

512µ2r

3
P. Netrapalli et al., “Non-Convex Robust PCA,” NIPS, 2014
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1: Input: Matrix M ∈ Rm×n, convergence criterion ε, target rank r , thresholding
parameter β.

2: Pk(A) denotes the best rank-k approximation of matrix A. HTζ(A) denotes
hard-thresholding, i.e. (HTζ(A))ij = Aij if |Aij | ≥ ζ and 0 otherwise.

3: Set initial threshold ζ0 ← βσ1(M).
4: L(0) = 0,S (0) = HTζ0(M − L(0))
5: for Stage k = 1 to r do
6: for Iteration t = 0 to T = 10 log

(
nβ‖M − S (0)‖/ε

)
do

7: Set threshold ζ as

ζ = β

(
σk+1(M − S) +

(
1

2

)t

σk(M − S)

)
8: L(t+1) = Pk(M − S (t))
9: S (t+1) = HTζ(M − L(t+1))

10: end for
11: if βσk+1(L) < ε

2n then

12: Return:  L(T ),S (T ) /* Return rank-k estimate if remaining part has small
norm */

13: else
14: S (0) = S (T ) /* Continue to the next stage */
15: end if
16: end for
17: Return: L(T ),S (T )
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Convex vs. Non-Convex solutions

Algorithm PCA∗ Convex Non-Convex

Run Time (per iteration) O(rmn) O(m2n) O(r2mn)

# iterations O(log(1/ε)) O(1/ε) O(log(1/ε))

I Above comparisons are for similar assumptions on sparsity and
incoherence in convex and non-convex solutions.

*Using the power method
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Analysis of non-convex solution

I Theorem: Under conditions (L1), (L2), and (S1), and the
choice of β as above, the outputs L̂ and Ŝ of Algorithm
satisfy:

‖L̂− L∗‖F ≤ ε, ‖Ŝ − S∗‖∞ ≤
ε√
nm

, supp(Ŝ) ⊆ supp(S∗)

I Proof outline

1. Reduce the problem to symmetric case, maintaining the
assumptions

2. Show decay in ‖L− L∗‖∞ after projection onto set of rank-k
matrices.

3. Show decay in ‖S − S∗‖∞ after projection onto set of sparse
matrices

4. Recurse the argument.
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Analysis of non-convex solution

Some key ideas

I Incoherence, sparsity assumption on the symmetrized
versions (Remark)

I Fixed-point convergence characterization of eigenvalues of
error term (Lemma 7)

I Counting p-hops on sparse graphs. (Lemma 5)
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Simulation Results

Simulation conditions

I m = 256, n = 256.

I Generated supp(S∗) uniformly at random with probability
p = 0.9 =⇒ ≈ 6000 non zero entries.

I T is the maximum of 50, value obtained by the formula
given in Algorithm 1.
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Simulation Results
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Thank you.
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