
Provable and efficient algorithms for robust subspace learning and tracking

by

Praneeth Kurpad Narayanamurthy

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Electrical Engineering (Communications and Signal Processing)

Program of Study Committee:
Namrata Vaswani, Major Professor

Chinmay Hegde
Songting Luo

Jin Tian
Zhengdao Wang

The student author, whose presentation of the scholarship herein was approved by the program of
study committee, is solely responsible for the content of this dissertation. The Graduate College
will ensure this dissertation is globally accessible and will not permit alterations after a degree is

conferred.

Iowa State University

Ames, Iowa

2021

Copyright c© Praneeth Kurpad Narayanamurthy, 2021. All rights reserved.

ii

DEDICATION

To my inimitable grandfather, Late. Chintakunta Surya Prakash Rao.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES ix

LIST OF FIGURES xii

ACKNOWLEDGMENTS xvii

ABSTRACT xx

CHAPTER 1. INTRODUCTION 1

1.1 References . 5

CHAPTER 2. MODEL-BASED ROBUST SUBSPACE TRACKING 7

2.1 Introduction . 7

2.1.1 Notation and Problem Setting . 8

2.1.2 Related Work and our Contributions . 12

2.1.3 The need for a piecewise constant model on subspace change 15

2.1.4 Chapter Organization . 16

2.2 The simple-ReProCS Algorithm and its Guarantee 17

2.2.1 Simple-ReProCS (s-ReProCS) . 17

2.2.2 Assumptions and Main Result . 19

2.2.3 Discussion . 24

2.3 Discussion of Related Work . 33

2.4 Why s-ReProCS works: main ideas of our proof . 36

2.4.1 Why s-ReProCS with tj known works . 37

iv

2.4.2 Why automatic subspace change detection and Automatic Simple-ReProCS

works . 40

2.5 Proving Theorem 2.2 with assuming t̂j = tj . 41

2.5.1 PCA in data-dependent noise with partial subspace knowledge 42

2.5.2 Two simple lemmas from [22] . 47

2.5.3 Definitions and main claim needed for Theorem 2.2 and Corollary 2.3 with

t̂j = tj . 48

2.5.4 The three main lemmas needed to prove the main claim and their proofs . . . 50

2.6 Empirical Evaluation . 55

2.6.1 Synthetic Data . 56

2.6.2 Real Data: Background Subtraction . 60

2.7 Conclusions and Future Work . 61

2.8 References . 62

2.9 Appendix A: Proof of Theorem 2.2 or Corollary 2.3 without assuming tj known . . . 65

2.10 Appendix B: Proof of Theorem 2.7: PCA in data-dependent noise with partial sub-

space knowledge . 69

2.11 Appendix C: Proof of Theorem 2.7 . 70

2.12 Appendix D: Proof of Lemma 2.24: high probability bounds on the sin θ theorem

bound terms . 75

2.13 Appendix E: Proof of Projected CS Lemma . 83

2.14 Appendix F: Time complexity of s-ReProCS . 85

2.15 Appendix G: Preliminaries: Cauchy-Schwarz, matrix Bernstein and Vershynin’s sub-

Gaussian result . 86

CHAPTER 3. NEARLY OPTIMAL ROBUST SUBSPACE TRACKING 89

3.1 Introduction . 89

3.1.1 Notation . 92

v

3.1.2 Significance and novelty of our PCA result and its use to analyze Robust

Subspace Tracking . 92

3.2 PCA in Data-Dependent Noise . 94

3.2.1 Problem Setting . 94

3.2.2 SVD solution and guarantee for it . 95

3.2.3 Application to PCA in Sparse Data-Dependent Noise (PCA-SDDN) 96

3.2.4 Generalizations of Theorem 3.31 . 98

3.3 Nearly Optimal Robust Subspace Tracking (NORST) 99

3.3.1 Problem setting and algorithm design constraints 99

3.3.2 Nearly Optimal Robust ST (NORST) via Recursive Projected Compressive

Sensing (CS): main idea . 100

3.3.3 Identifiability and other assumptions . 101

3.3.4 Guarantees . 103

3.3.5 How slow subspace change (Assumption 3.37) enables improved outlier tol-

erance . 106

3.3.6 Understanding Statistical Right Incoherence 108

3.3.7 Nearly Optimal Robust ST via ReProCS (NORST-ReProCS): details 109

3.4 Related Work . 110

3.5 Extensions: subspace change at each time, subspace tracking without detection . . . 114

3.5.1 Subspace changing at each time . 114

3.5.2 NORST-NoDet: NORST without subspace change detection 115

3.6 Proof of correctness of the NORST algorithm . 116

3.6.1 Main Lemmas . 116

3.6.2 Proof of the first two lemmas . 119

3.6.3 Proof of Lemma 3.48 . 124

3.7 Empirical Evaluation . 128

3.8 Conclusions and Future Directions . 131

vi

3.9 References . 133

3.10 Appendix A: Proofs for Sec. 3.2 . 136

3.10.1 Proof of Theorem 3.31 . 136

3.10.2 A useful corollary that follows from above proof 139

3.10.3 Main idea of the proof of Corollary 3.43 . 140

3.10.4 Concentration Bounds . 140

3.11 Appendix B: Proof of Theorem 3.39 and Corollary 3.40 142

3.12 Appendix C: Proofs for Section 3.3: Time complexity derivation and Proof of The-

orem 3.42 . 145

3.12.1 Time complexity derivation . 145

3.12.2 Proof of Theorem 3.42 for NORST-NoDet . 146

CHAPTER 4. SUBSPACE TRACKING FROM INCOMPLETE DATA IN

THE PRESENCE OF OUTLIERS 150

4.1 Introduction . 150

4.1.1 Notation . 154

4.1.2 Problem Statement . 155

4.1.3 Identifiability assumptions . 155

4.2 The NORST-miss algorithm and guarantees . 157

4.2.1 NORST-miss algorithm . 158

4.2.2 Main Result: noise-free ST-miss and MC . 160

4.2.3 Main Result – ST-miss and MC with noise 163

4.2.4 Extensions of basic NORST-miss . 165

4.3 Detailed discussion of prior art . 167

4.4 Robust ST with missing entries . 172

4.5 Experimental Comparisons . 175

4.5.1 Parameter Setting for NORST . 175

4.5.2 Fixed Subspace, Noise-free data . 176

vii

4.5.3 Changing Subspaces, Noisy and Noise-free Measurements 177

4.5.4 Matrix Completion . 178

4.5.5 Real Video Data . 179

4.5.6 RST-miss and RMC . 181

4.6 Conclusions and Open Questions . 182

4.7 Appendix A: Proof of Theorem 4.59 and Corollary 4.61 183

4.8 Appendix B: Proof of Corollary 4.66 . 186

4.9 References . 186

CHAPTER 5. FEDERATED OVER-AIR SUBSPACE TRACKING FROM IN-

COMPLETE AND CORRUPTED DATA 196

5.1 Introduction . 196

5.2 Notation and Problem Formulation . 200

5.2.1 Notation . 200

5.2.2 ST with missing data (ST-miss) . 200

5.2.3 Robust ST-miss (RST-miss) . 202

5.2.4 Federated Over-Air Data Sharing Constraints and Iteration Noise 202

5.3 ST from Missing Data (ST-miss) . 203

5.3.1 Proposed Algorithm . 203

5.3.2 Assumptions and Main Result . 204

5.3.3 Guarantee for piecewise constant subspace change 207

5.3.4 Proof of Theorem 5.73 and 5.74 . 207

5.3.5 Proof of Theorem 5.75 . 212

5.4 Federated Over-Air Robust ST-Miss . 212

5.4.1 Dealing with mild asynchrony and channel fading 213

5.4.2 Federated Over-Air PCA via the Power Method (PM) 214

5.4.3 Fed-OA-RSTMiss: Problem setting . 216

5.4.4 Algorithm . 218

viii

5.4.5 Guarantee for Fed-OA RST-miss . 219

5.4.6 Proof Outline . 221

5.5 Numerical Experiments . 223

5.5.1 Centralized STMiss . 223

5.5.2 Fedrated ST-Miss . 225

5.6 References . 225

5.7 Appendix A: Proof of Key Lemmas for Theorem 5.81 229

5.8 Appendix B: Extensions of Theorem 5.73 and Theorem 5.81 233

5.8.1 Generalization to detect and track larger subspace changes for centralized

ST-miss . 233

5.9 Appendix C: Robust Subspace Tracking with Missing Data 237

5.10 Appendix D: Convergence Analysis for FedPM . 239

5.10.1 Eigenvalue convergence . 239

5.10.2 The Noise Tolerant FedOA-PM, Algorithm, and Guarantee 241

5.10.3 Proof of Theorem 5.91 . 243

5.10.4 Numerical Verificaion of Theorem 5.91 . 248

5.11 Appendix E: Preliminaries . 249

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 251

ix

LIST OF TABLES

Page

Table 2.1 Comparing s-ReProCS with other RPCA solutions with complete guarantees. For

simplicity, we ignore all dependence on condition numbers. In this table rL is the

rank of the entire matrix L, while r is the maximum rank of any sub-matrices

of consecutive columns of L of the form L[tj ,tj+1) and thus r ≤ rL. We show the

unrealistic assumptions in red. 14

Table 2.2 Comparing s-ReProCS with online or tracking approaches for RPCA. We show

the unrealistic assumptions in red. Here, f denotes the condition number of Λ,

r is the maximum dimension of the subspace at any time, and rL refers to the

rank of matrix L. Thus r ≤ rL. Here, s-ReProCS-no-delete refers to Algorithm

4 without the subpace deletion step. 17

Table 2.3 List of Symbols and Assumptions used in the Main Result 2.2, and Corollary 2.3.

(Note: We show that whp, t̂j ≥ tj and t̂j + (K + 1)α ≤ tj+1 and hence, whp,

J0,JK+2 are non-empty intervals. 42

Table 2.4 List of symbols and their associated meaning for understanding the proof of

Theorems 2.2 and 2.7. The complete definitions can be found in Definitions 2.12

and 2.20. We also provide the location of the proof for each of events/scalars

where applicable in parenthesis. 43

Table 2.5 Average subspace error SE(P̂(t), P(t)) and time comparison for different values

of signal size n. The values in brackets denote average time taken per frame (–

indicates that the algorithm does not work). 59

Table 4.1 List of Symbols and Assumptions used in Theorem 4.59. 191

x

Table 4.2 Comparing guarantees for ST-miss. We treat the condition number and incoher-

ence parameters as constants for this discussion. 192

Table 4.3 Comparing MC guarantees. Recall rL := rank(L) ≤ rJ . In the regime when the

subspace changes frequently so that J equals its upper bound and rL ≈ d/ log2 n,

NORST-miss is better than the non-convex methods (AltMin, projGD, SGD)

and only slightly worse than the convex ones (NNM). In general, the sample

complexity for NORST-miss is significantly worse than all the MC methods. . . 192

Table 4.4 Comparing robust MC guarantees. We treat the condition number and incoher-

ence parameters as constants for this table. 192

Table 4.5 (top) Number of samples (frames) required by NORST and its heuristic exten-

sions, and PETRELS to attain ≈ 10−16 accuracy. The observed entries are drawn

from a i.i.d. Bernoulli model with ρ = 0.7 fraction of observed entries. Notice

that NORST-buffer(4) and NORST-sliding-window (β = 10, R = 1) converges at

the same rate as PETRELS and the time is also comparable. The other vari-

ants require more samples to obtain the same error but are faster compared to

PETRELS. (bottom) Evaluation of Sample Efficient NORST with ρ1 = 0.9 and

ρ2 = 0.15. 194

Table 4.6 Comparison of ‖L− L̂‖F /‖L‖F for MC. We report the time taken per sample in

milliseconds in parenthesis. Thus the table format is Error (computational time

per sample). The first three rows are for the fixed subspace model. The fourth row

contains results for time-varying subspace and with noise of standard deviation

0.003
√
λ− added. The last row reports Background Video Recovery results (for

the curtain video shown in Fig. 4.4 when missing entries are Bernoulli with ρ = 0.9.195

Table 4.7 Comparing recovery error for Robust MC methods. Missing entries were Bernoulli

with ρ = 0.9, and the outliers were sparse Moving Objects with ρsparse = 0.95.

The time taken per sample is shown in parentheses. 195

xi

Table 5.1 Comparing bounds on channel noise variance σ2
c and on number of iterations L.

Let gap1 := λr − λr+1, gapq := λr − λq+1 for some r ≤ q ≤ r′. Also, we assume

ε ≤ c/r. 243

xii

LIST OF FIGURES

Page

Figure 1.1 Subspace change example in 3D with r = 2. 2

Figure 2.1 Subspace change example in 3D with r = 2. 12

Figure 2.2 First row ((a), (b)): Illustrate the subspace error and the normalized `t error for

n = 5000 and outlier supports generated using Model 2.19. Both the metrics are

plotted every kα− 1 time-frames. The results are averaged over 100 iterations.

Second row ((c), (d)) illustrate the subspace error and the normalized `t error

for n = 500 and Bernoulli outlier support model. They are plotted every kα− 1

time-frames. The plots clearly corroborates the nearly-exponential decay of the

subspace error as well as the error in `t. 58

xiii

Figure 2.3 Comparison of background recovery performance is Foreground-Background

Separation tasks for MR (first two rows), SL (middle two rows) and LB (last two

rows) sequences (first two rows). The recovered background images are shown at

t = ttrain+140, 630 for MR, t = ttrain+200, 999 for SL, and t = ttrain+260, 610 for

LB. Notice that for the LB sequence, all algorithms work fairly well. In the MR

sequence, since the s-ReProCS is able to tolerate larger max-outlier-frac-row, it

is able to completely remove the person. Further, only s-ReProCS background

does not contain the person or even his shadow. All others do. Finally, in the

SL sequence, it is demonstrated that the changing subspace model is much more

appropriate for long sequences since only s-ReProCS and GRASTA are able to

recognize that the background has changed. GRASTA contains some artifacts,

but s-ReProCS is able to clearly isolate the person. The time taken per frame

(in milliseconds) is shown in parentheses above the respective video sequence.

In all the videos, notice that s-ReProCS is also faster than all algorithms with

the exception of GRASTA which only works for the lobby sequence that involves

very little background changes. 88

Figure 3.1 Top: Left plot illustrates the `t error for outlier supports generated using Mov-

ing Object Model and right plot illustrates the error under the Bernoulli model.

The values are plotted every kα − 1 time-frames. Bottom: Comparison of

‖L̂ − L‖F /‖L‖F for Online and offline RPCA methods. Average time for the

Moving Object model is given in parentheses. The offline (batch) methods are

performed once on the complete dataset. 128

Figure 3.2 Empirical probability that ‖L̂ − L‖F /‖L‖F < 0.5 for AltProj and for smooth-

ing NORST. Note that NORST indeed has a much higher tolerance to outlier

fraction per row as compared to AltProj. Black denotes 0 and white denotes 1. . 130

xiv

Figure 3.3 In the above plots we show the variation of the subspace errors for varying xmin.

In particular, we set all the non-zero outlier values to xmin. The results are

averaged over 100 independent trials. 130

Figure 3.4 Comparison of visual performance in Foreground Background separation. The

first two rows are for the LB dataset and the last two rows are for the MR dataset.

The time taken by each algorithm (per frame) in milliseconds is provided in

parenthesis. 132

Figure 4.1 Demonstrating the need for the piecewise constant subspace change model.

The black circles plot is for subspace changing at each time t, while the red

squares one is for piecewise constant subspace change, with change occurring at

t = t1. The data is generated so that, in both experiments, SE(P(t1),P(0)) is the

same. In the piecewise constant case (red squares), we can achieve near perfect

subspace recovery. But this is not possible in the “changing at each time” (black

circles) case. For details, see Sec. 4.5 and Fig. 4.3(c). 156

Figure 4.2 We compare NORST-miss and its extensions with PETRELS and GROUSE.

We plot the logarithm of the subspace error between the true subspace P(t) and

the algorithm estimates, P̂(t) on the y-axis and the number of samples (t) on

the x-axis. As can be seen, in the first two cases, NORST-buffer and NORST-

sliding have the best performance (while also being faster than PETRELS),

followed by PETRELS, basic NORST and then GROUSE. PETRELS performs

best in the scenario of time varying Λt. The computational time per sample (in

milliseconds) for each algorithm is mentioned in the legend. 174

xv

Figure 4.3 Subspace error versus time plot for changing subspaces. We plot the

SE(P̂(t),P(t)) on the y-axis and the number of samples (t) on the x-axis. The en-

tries are observed under Bernoulli model with ρ = 0.9. The computational time

taken per sample (in milliseconds) is provided in the legend parenthesis. (a)

Piecewise constant subspace change and noise-sensitivity: Observe that

after the first subspace change, NORST-sliding adapts to subspace change using

the least number of samples and is also ≈ 6x faster than PETRELS whereas

GROUSE requires more samples than our approach and thus is unable to con-

verge to the noise-level (≈ 10−4); (b) Piecewise Constant and noise-free:

All algorithms perform significantly better since the data is noise-free. We clip

the y-axis at 10−10 for the sake of presentation but NORST and PETRELS

attain a recovery error of 10−14. (c) Subspace changes a little at each

time: All algorithms are able to track the span of top-r singular vectors of

[P(t−α+1), · · · ,P(t)] to an accuracy of 10−4. As explained, the subspace change

at each time can be thought of as noise. GROUSE needs almost 2x number of

samples to obtain the same accuracy as NORST while PETRELS is approxi-

mately 10x slower than both NORST and GROUSE. 177

Figure 4.4 Background Recovery under Moving Object Model missing entries (ρ = 0.98).

We show the original, observed, and recovered frames at t = {980, 1000, 1020}.

NORST and SVT are the only algorithms that work although NORST is almost

3 orders of magnitude faster than SVT. PETRELS(10) exhibits artifacts, while

IALM and GROUSE do not capture the movements in the curtain. The time

taken per sample for each algorithm is shown in parenthesis. 179

xvi

Figure 4.5 Background Recovery with foreground layer, and Bernoulli missing entries

(ρ = 0.9). We show the original, observed and recovered frames at t =

1755 + {1059, 1078, 1157}. NORST-miss-rob exhibits artifacts, but is able to

capture most of the background information, whereas, GRASTA-RMC and

projected-GD fail to obtain meaningful estimates. The time taken per sample

for each algorithm is shown in parenthesis. 180

Figure 5.1 Comparison of ST-Miss Algorithms in the centralized setting. 223

Figure 5.2 Corroborating the claims of Theorem 5.81. 225

Figure 5.3 Numerical verification of Theorem 5.91: Left: increasing η increases robustness

to noise; Right: Increasing the “gap” helps achieve faster, better convergence. 249

xvii

ACKNOWLEDGMENTS

“If I have seen further it is by standing on the shoulders of Giants”

– Sir Isaac Newton (citation needed)

First and foremost, I wish to express my gratitude to my advisor Prof. Namrata Vaswani for

her guidance, support, and inspiration throughout my Ph.D. degree. The countless hours I spent

brainstorming ideas and experiments with her has been some of my most memorable times in Ames.

Her attention to detail, ability to see proofs several steps ahead, and commitment to research, are a

few things I aspire to emulate in my research career. I appreciate the time she spent in molding me

into a better researcher and writer. In addition to being a great academic mentor, she has always

been kind and patient with me through some very trying times of my life.

I have also greatly enjoyed the interactions with my committee members. I wish to thank

Prof. Chinmay Hegde for introducing me to several ideas as part of his Data Science course. I

have particularly enjoyed late-night, pre-deadline, and unplanned conversations at the library with

him. His enthusiasm for science, and his teaching style is something I will always look up to. I

also wish to thank Prof. Songting Luo for his amazing course on Numerical Linear Algebra, and

several post-class discussions that have shaped my thesis. Prof. Jin Tian has taught me much of

the Machine Learning I know and the material from this course has played a critical role in the way

I think. Prof. Zhengdao Wang has been a great mentor and I have learnt much (many times, in

hindsight!) from him through his incisive questions at seminars, and his excellent course on Deep

Learning.

I wish to thank Prof. Nicola Elia, Prof. Oliver Eulenstein, Prof. Leslie Hogben, and Prof.

Eric Weber for patiently answering all my questions in class. I also wish to thank Prof. Aditya

xviii

Ramamoorthy for his course on Random Processes. It was undoubtedly the best course I took at

Iowa State University.

A huge thanks to Ardhendu, Han, Hooshang, Li, Mohammadreza, Sara, and Songtao – all of

whom I incessantly bombarded with questions and seemingly arbitrary discussions but they always

provided me with wise, helpful feedback. I have learnt much from you. I would like to thank my

other friends at Coover Hall that made the long days at Coover enjoyable: Abhishek, Anindya,

Ameya, Amit, Amitanghsu, Ashraf, Gauri, Hooman, Kostas, Koushik, Krishna, Pan, Qi, Vahid,

Vahid-Seyyed, Viraj, Rahul, Shubhanwit, Thanh, and Zhengyu. I wish you all the best, and hope

the connections remain. A special thanks to Vahid for the soccer and snooker sessions, and the

induction into the Aluvial trivia gang.

Outside Coover Hall, I have been fortunate to share several Bridge, and mafia (secret-H?) parties

with a large circle of friends, including Amar, Aishwarya, Arpa, Ashirwad, Carolyn, Diskhant,

Ganesh, Jyothsna, Niranjana, Payas, Prathamesh, Pratyush, Pratyasha, Raghunandan, Roshni,

Shravan, Shrikant, Soori, Souvik, Vignesh, and Vishal. These sessions helped wind-down the

incredibly hard graduate life. I would like to especially thank Ganesh for all the (pseudo) jam

sessions, impromptu commiseration over food, FIFA nights, and initiating engaging, insightful

discussions. I also thank my roommate Payas for his patience during my numerous (long and

probably incoherent) rants about life, binge-watching sessions, and, for being a great roommate in

general. Finally, I owe a great deal to my friend Gauri for introducing me to Nuit Blanche, for

being a constant support through the low times of my life. I will fondly remember the innumerable

cups of tea, (daily) HyVee stops, board-games, and “debates” on everthing under the sun.

I wish to thank my friends across the country: Babita, Deepthi, Juju, JK, Koli, Ole, Rakshith,

Shreyas, Shruthi, Suchita, Turre, and Viji for being a family away from home. I eagerly looked

forward to our trips and you guys never failed to reinvigorate me.

I wish to thank my relatives and cousins for always believing in me. A special thanks to my

grandmother, Late. D. Gowramma for her love and affection. Last but not the least, I wish to

thank my parents, Gayathri, and Narayana Murthy for their constant love, affection, and support.

xix

This thesis is the culmination of your sacrifices, and I am forever indebted to you. Thank you for

all that you continue to do.

If I have missed anyone, I apologize, and thank you for understanding.

xx

ABSTRACT

In the past decades, there has been an explosion in the amount of data that is generated. This

calls for development of efficient algorithms to uncover useful information from massive datasets.

Although several recent advances in computation allows for faster processing, efficient communica-

tion and storage and so on, it is the need of the hour to develop intelligent algorithms that minimize

resource utilization, and does so in a near real-time fashion. A commonly observed theme in the

Signal Processing and Machine Learning is to exploit the fact that most real-world (extremely high

dimensional) data exhibits a simple, succinct, low-dimensional representation. In other words, the

data lies close to some low-dimensional structure of the ambient space. In this thesis, we consider

two such low-dimensional structures: sparsity and low-rank. Specifically, we develop provable algo-

rithms for the problem of Subspace Tracking (ST) under several constraints. First we study robust

ST wherein the data is corrupted by arbitrary outliers. Next, we consider the setting where part of

the data is missing (due to issues in transmission or storage). Finally, we develop algorithms that

also deal with distributed data.

1

CHAPTER 1. INTRODUCTION

In the current big-data age, there has been an explosion in the amount of data generated all

around us. This can be attributed to the accelerated development of efficient acquisition, transmis-

sion, storage and computational modules. Concurrently, the quest of high-dimensional statistical

signal processing, and machine learning (ML) researchers has been the development of efficient

data-processing algorithms. A commonly observed theme in the aforementioned area is as follows:

although the observed data is high-dimensional, typically, most real world data approximately lies

in a significantly lower-dimensional ambient space. Motivated by this intuition, the ML community

has actively developed provable, and efficient (in terms of sample-complexity, robustness, and com-

putational) algorithms to learn this underlying latent space. However, a key challenge that needs to

be addressed is that somewhere in the data-processing pipeline, it is inevitable to avoid corruption

of this data, either in terms of missing data, or in terms of outliers that seep in. Another striking

feature of traditional datasets is the presence of temporal structure owing to the fact that most

data is acquired over time from possibly multi-modal sensors, which can be modeled as time-series

data. The overarching goal of this work is to develop provable, robust, and efficient algorithms for

low-dimensional structural recovery problem from time-series data.

The problem of estimating and tracking a low-dimensional linear subspace from time-series

data has garnered significant interest in the signal processing and automatic control communities

in the past three decades [2, 18, 13]. However, to the best of our knowledge, all convergence results

for this problem were either asymptotic, assumed a single underlying subspace, or only provided

partial guarantees. My research provides an attempt at resolving this long standing problem, and in

addition, we also design and analyze provable, and non-asymptotic algorithms that are also robust.

Model-Based Robust Subspace Tracking. In Chapter 2, we first consider a linear

superposition of a low-rank (r-dimensional subspace in n dimensions) and sparse structure for spa-

2

old subspace

new subspace

Figure 1.1: Subspace change example in 3D with r = 2.

tiotemporal data. In the offline setting, this is commonly referred to as Robust Principal Component

Analysis [1] (RPCA). The dynamic version of this problem is referred to as the Robust Subspace

Tracking (RST) problem [17]. This model is applicable for problems such as Video Layering (sepa-

rating a video into foreground and background layers), social-network structure identification, and

recommendation system design to name a few. In this section, for ease of analysis, we assume

that the underlying subspaces can change every so often (in a piecewise constant fashion), but

impose a constraint on how the changes occur. Formally, we assume that whenever the subspace

changes, only 1 out of the r directions changes (see Fig. 1.1 for a simple schematic). We develop

an algorithm dubbed simple-Recursive Projected Compressive Sensing (s-ReProCS) based on the

ReProCS framework [12] to track the (a) sparse outliers, (b) the true low-dimensional data, and (c)

the underlying subspace. We show that using a “good enough” initialization, and under standard

RPCA/RST assumptions: incoherence of the subspaces, a lower-bound on most outlier magnitudes,

mild statistical assumptions on the subspace coefficients, and the subspace change model mentioned

above, s-ReProCS is able obtain ε-accurate estimates (of the low-dimensional and sparse vectors,

and the underlying subspaces) using just O(r log n log(1/ε)) samples. Additionally, we show that by

exploiting the statistical assumptions, we can tolerate a larger fraction of outliers per-row (increase

from O(1/r) to O(1)) in the sparse matrix. Finally, the running time of our algorithm is equal to

(upto constant factors) running a rank r-vanilla SVD on the data matrix. The results have been

published in IEEE ISIT 2018 [8] and IEEE Transactions on Information Theory [9].

Nearly Optimal Robust Subspace Tracking. A significant drawback of the work described

in Chapter 2 was the restrictive subspace change model. In an attempt to relax this assumption,

3

we propose a modified algorithm referred to as Nearly Optimal RST (NORST). In this work, we

assume that the subspace either (a) follows a piecewise constant model but when the subspace

does change, it can do so arbitrarily or (b) the subspace is allowed to change at each time, but

only by a little and have abrupt changes at certain times. Again, we show that under standard

RST assumptions, NORST is able to obtain ε-accurate estimates of the underlying subspaces using

just O(r log n log(1/ε)) samples. Even with perfect data, estimating a r dimensional subspace in

n dimensions requires r samples, and thus our upper bound is only logarithmic factors away from

the lower bound. Akin to the results in Chapter 2, our proposed method has an improved outlier

tolerance, and the running time (upto constant factors) is the same as running a vanilla SVD on

the data matrix.

A critical component of the proof technique involved developing finite sample guarantees for

Principal Components Analysis (PCA) in data-dependent noise. Although PCA has been exhaus-

tively studied in the last several decades, most results assume that the noise is uncorrelated (if not

independent) with the true data. We consider the setting where the noise can be correlated with the

data and provide finite sample guarantees for the SVD solution. In particular, we assume that the

noise depends linearly on the data. A key application of the PCA in (sparse) data-dependent noise

is in ReProCS based RST. We build upon [14] and provide improved sample-complexity analysis,

and a less restrictive data-dependent noise model . These results have been published Allerton

2017 [15] and ISIT 2018 [16].

Using the overall proof and algorithmic skeleton mentioned above, we provide an online al-

gorithm that solves static RPCA in a fast, sample- and memory- efficient manner (published in

ICASSP 2018 [6]). A preliminary version of NORST appears in ICML 2018 [7] and the complete

paper has been accepted to appear in IEEE Journal of Special Areas in Information Theory [10].

Subspace Tracking from Incomplete Data in Presense of Outliers. In Chapters 2 and

3 we consider the fully observed setting, i.e., we do not account for missing data which may not be

practically valid. In Chapter 4, we consider the problem of estimating, and tracking the underlying

subspaces when part of the data is missing. The static version of this problem is commonly referred

4

to as Matrix Completion (Robust Matrix Completion in the presence of outliers). While (Robust)

Matrix Completion has been extensively studied in the literature, to the best of our knowledge,

there were no finite-sample, complete guarantees for the Subspace Tracking with missing entries

(STMiss) problem. We show that through a simple modification of our approach for solving RST,

the proposed method can also deal with missing data. In particular, we show that under mild

and easily interpretable assumptions, the proposed method is fast, sample efficient, and provably

correct. Furthermore, while most Matrix Completion methods require that the set of observed

entries follow uniform random sampling scheme (i.e., each entry is observed independently of all

others with a fixed probability), our algorithm can tolerate deterministic patterns. The tradeoff is

that our method requires a larger number of observed entries1. The STMiss guarantee has been

published in ISIT 2019 [5] and the Robust STMiss problem has been published in ICASSP 2019

[3]. The complete result has been published in IEEE Transactions on Signal Processing [4].

Federated Over-Air Subspace Learning. In Chapters 2 through 4, we implicitly assume

that all the data is available at a central node. However, in most practical settings, it is more natural

to consider a decentralized setting such that the data is collected in a distributed fashion. Owing to

the enormous quantity of acquired data sharing the raw data to a central server is communication-

inefficient, but also raises privacy concerns. To alleviate this, in Chapter 5 we analyze the previously

discussed RST problem, but in a federated, over-air setting. Federated Learning [19] refers to

a paradigm wherein the data is distributed across K peer nodes and the nodes can only share

summary statistics of their raw data with the central server. For the communication protocol, we

consider the newly developed wireless over-air transmission modality that allows for synchronous

transmission by the peer nodes as it is K times time- and bandwidth- efficient. However, the

central server only receives a sum (superposition) of the individual transmissions and the received

sum is corrupted by additive channel noise. We develop an algorithm called Federated Over-Air

Robust Subspace Tracking with Missing data (Fed-OA-STMiss) to solve RST while obeying the

constraints of federated, over-air communication. In particular, we show that under standard

1An equivalent tradeoff can also observed for RPCA wherein, if the support of the sparse matrix is chosen in a
probabilistic manner, the tolerable fraction of outliers is larger.

5

RST assumptions and i.i.d. Gaussian iteration noise, with high probability, Fed-OA-RSTMiss

computes an ε-accurate subspace estimate (an r dimensional subspace in n dimensions) using just

O(r log n log(1/ε)) samples. As in the previous sections, we also show that the running time if

equal to (upto constant factors) that of performing a rank-r vanilla SVD on the data matrix. A

preliminary version of this work is under review in IEEE Transactions on Signal Processing [11].

We are currently extending this work to also provide a guarantee for differentially private RST in

a distributed setting.

Note: Throughout this work, we have tried our best to keep the notation consistent, but each

chapter of this work is to be treated independently.

1.1 References

[1] Candès, E. J., Li, X., Ma, Y., and Wright, J. Robust principal component analysis? J.
ACM 58, 3 (2011).

[2] Comon, P., and Golub, G. H. Tracking a few extreme singular values and vectors in signal
processing. Proceedings of the IEEE 78, 8 (1990), 1327–1343.

[3] Narayanamurthy, P., Daneshpajooh, V., and Vaswani, N. Provable memory-efficient
online robust matrix completion. In IEEE Int. Conf. Acoust., Speech and Sig. Proc. (ICASSP)
(2019), IEEE, pp. 7918–7922.

[4] Narayanamurthy, P., Daneshpajooh, V., and Vaswani, N. Provable subspace tracking
from missing data and matrix completion. IEEE Transactions on Signal Processing (2019),
4245–4260.

[5] Narayanamurthy, P., Daneshpajooh, V., and Vaswani, N. Provable subspace tracking
with missing entries. In IEEE Intl. Symp. Info. Th. (ISIT) (2019).

[6] Narayanamurthy, P., and Vaswani, N. A fast and memory-efficient algorithm for ro-
bust pca (merop). In 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2018), IEEE, pp. 4684–4688.

[7] Narayanamurthy, P., and Vaswani, N. Nearly optimal robust subspace tracking. In
International Conference on Machine Learning (2018), pp. 3701–3709.

[8] Narayanamurthy, P., and Vaswani, N. Provable dynamic robust pca or robust sub-
space tracking. In 2018 IEEE International Symposium on Information Theory (ISIT) (2018),
pp. 376–380.

6

[9] Narayanamurthy, P., and Vaswani, N. Provable dynamic robust pca or robust subspace
tracking. IEEE Transactions on Information Theory 65, 3 (2019), 1547–1577.

[10] Narayanamurthy, P., and Vaswani, N. Fast robust subspace tracking via pca in sparse
data-dependent noise. Journal of Selected Areas in Information Theory (2021).

[11] Narayanamurthy, P., Vaswani, N., and Ramamoorthy, A. Federated over-air sub-
space tracking from incomplete and corrupted data. arXiv preprint arXiv:2002.12873 (IEEE
Transactions on Signal Processing) (2020).

[12] Qiu, C., Vaswani, N., Lois, B., and Hogben, L. Recursive robust pca or recursive sparse
recovery in large but structured noise. IEEE Trans. Info. Th. (August 2014), 5007–5039.

[13] Vaswani, N., Bouwmans, T., Javed, S., and Narayanamurthy, P. Robust subspace
learning: Robust pca, robust subspace tracking, and robust subspace recovery. IEEE signal
processing magazine 35, 4 (2018), 32–55.

[14] Vaswani, N., and Guo, H. Correlated-pca: Principal components’ analysis when data and
noise are correlated. In NIPS (2016).

[15] Vaswani, N., and Narayanamurthy, P. Finite sample guarantees for pca in non-isotropic
and data-dependent noise. In Allerton Conf. on Commun., Control, and Comput. (2017).

[16] Vaswani, N., and Narayanamurthy, P. Pca in sparse data-dependent noise. In ISIT
(2018), pp. 641–645.

[17] Vaswani, N., and Narayanamurthy, P. Static and dynamic robust pca and matrix com-
pletion: A review. Proceedings of the IEEE 106, 8 (2018), 1359–1379.

[18] Yang, B. Asymptotic convergence analysis of the projection approximation subspace tracking
algorithms. Signal Processing 50 (1996), 123–136.

[19] Yang, Q., Liu, Y., Chen, T., and Tong, Y. Federated machine learning: Concept and
applications. ACM Transactions on Intelligent Systems and Technology (TIST) 10, 2 (2019),
1–19.

7

CHAPTER 2. MODEL-BASED ROBUST SUBSPACE TRACKING

Praneeth Narayanamurthy and Namrata Vaswani

Dept. of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50010

Modified from a manuscript published in IEEE Transactions on Information Theory

Abstract

Dynamic robust PCA refers to the dynamic (time-varying) extension of robust PCA (RPCA).

It assumes that the true (uncorrupted) data lies in a low-dimensional subspace that can change

with time, albeit slowly. The goal is to track this changing subspace over time in the presence

of sparse outliers. We develop and study a novel algorithm, that we call simple-ReProCS, based

on the recently introduced Recursive Projected Compressive Sensing (ReProCS) framework. Our

work provides the first guarantee for dynamic RPCA that holds under weakened versions of stan-

dard RPCA assumptions, slow subspace change and a lower bound assumption on most outlier

magnitudes. Our result is significant because (i) it removes the strong assumptions needed by the

two previous complete guarantees for ReProCS-based algorithms; (ii) it shows that it is possible

to achieve significantly improved outlier tolerance, compared with all existing RPCA or dynamic

RPCA solutions by exploiting the above two simple extra assumptions; and (iii) it proves that

simple-ReProCS is online (after initialization), fast, and, has near-optimal memory complexity.

2.1 Introduction

Principal Components Analysis (PCA) is a widely used dimension reduction technique in a va-

riety of scientific applications. Given a set of data vectors, PCA tries to finds a smaller dimensional

subspace that best approximates a given dataset. According to its modern definition [5], robust

PCA (RPCA) is the problem of decomposing a given data matrix into the sum of a low-rank matrix

8

(true data) and a sparse matrix (outliers). The column space of the low-rank matrix then gives the

desired principal subspace (PCA solution). In recent years, the RPCA problem has been exten-

sively studied, e.g., [5, 6, 14, 22, 20, 34, 33]. A common application of RPCA is in video analytics in

separating video into a slow-changing background image sequence (modeled as a low-rank matrix)

and a foreground image sequence consisting of moving objects or people (sparse) [5]. Dynamic

RPCA refers to the dynamic (time-varying) extension of RPCA [22, 11, 34]. It assumes that the

true (uncorrupted) data lies in a low-dimensional subspace that can change with time, albeit slowly.

This is a more appropriate model for long data sequences, e.g., surveillance videos. The goal is to

track this changing subspace over time in the presence of sparse outliers. Hence this problem can

also be referred to as robust subspace tracking.

2.1.1 Notation and Problem Setting

Notation. We use bold lower case letters to denote vectors, bold upper case letters to denote

matrices, and calligraphic letters to denote sets or events. We use the interval notation [a, b] to

mean all of the integers between a and b, inclusive, and [a, b) := [a, b − 1]. We will often use J

to denote a time interval and J α to denote a time interval of length α. We use 1S to denote the

indicator function for statement S, i.e. 1S = 1 if S holds and 1S = 0 otherwise. We use ‖ · ‖

without a subscript to denote the l2 norm of a vector or the induced l2 norm of a matrix. For other

lp norms, we use ‖·‖p. For a set T , we use IT to refer to an n×|T | matrix of columns of the identity

matrix indexed by entries in T . For a matrix A, A′ denotes its transpose and AT := AIT is the

sub-matrix of A that contains the columns of A indexed by entries in T . Also, we use Ai to denote

its i-th row. We use λmin(.) (σmin(.)) to denote the minimum eigen (singular) value of a matrix.

Similarly for λmax(.) and σmax(.). We use δs(A) to denote the s-restricted isometry constant (RIC)

[4] of A.

A matrix with mutually orthonormal columns is referred to as a basis matrix and is used to

represent the subspace spanned by its columns. For basis matrices P̂ , P , we use

SE(P̂ ,P) := ‖(I − P̂ P̂ ′)P ‖

9

to quantify the subspace error (SE) between their respective column spans. This measures the sine

of the maximum principal angle between the subspaces. When P̂ and P are of the same size,

then SE(.) is symmetric, i.e., SE(P̂ ,P) = SE(P , P̂). We use P⊥ to denote a basis matrix for the

orthogonal complement of span(P).

For a matrix M , we use basis(M) to denote a basis matrix whose columns span the same

subspace as the columns of M .

The letters c and C denote different numerical constants in each use; c is used for constants

less than one and C for those equal to or greater than one.

Dynamic RPCA or Robust Subspace Tracking Problem Statement. At each time t,

we observe yt ∈ Rn that satisfies

yt := `t + xt + vt, for t = 1, 2, . . . , d (2.1)

where xt is the sparse outlier vector, `t is the true data vector that lies in a fixed or slowly changing

low-dimensional subspace of Rn, and vt is small unstructured noise or modeling error. To be precise,

`t = P(t)at where P(t) is an n× r basis matrix with r � n and with ‖(I −P(t−1)P(t−1)
′)P(t)‖ small

compared to ‖P(t)‖ = 1 (slow subspace change). We use Tt to denote the support set of xt and we

let s := maxt |Tt|. Given an initial subspace estimate, P̂0, the goal is to track span(P(t)) within a

short delay of each subspace change. The initial estimate can be obtained by applying any static

(batch) RPCA technique, e.g., PCP [5] or AltProj [20], to the first ttrain data frames, Y[1,ttrain]. A

by-product of our solution approach is that the true data vectors `t, the sparse outliers xt, and

their support sets Tt can also be tracked on-the-fly. In many practical applications, in fact, xt or

Tt is often the quantity of interest.

We also assume that (i) |Tt|/n is upper bounded, (ii) Tt changes enough over time so that any

one index is not part of the outlier support for too long, (iii) the columns of P(t) are dense (non-

sparse), and (iv) the subspace coefficients at are element-wise bounded, mutually independent, zero

mean, have identical and diagonal covariance matrices, and are independent of the outlier supports

Tt. We quantify everything in Sec. 2.2.

10

Subspace Change Assumption. To ensure that the number of unknowns is not too many

(see the discussion in Sec. 2.1.3), we will further assume that the subspace span(P(t)) is piecewise

constant with time, i.e.,

P(t) = P(tj) for all t ∈ [tj , tj+1), j = 0, 1, . . . , J, (2.2)

with t0 = 1 and tJ+1 = d. Let Pj := P(tj). At each change time, tj , the change is “slow”. This

means two things:

1. First, at each tj , only one direction can change with the rest of the subspace remaining fixed,

i.e.,

SE(Pj−1,Pj) = SE(Pj−1,ch,Pj,rot) (2.3)

where Pj−1,ch is a direction from span(Pj−1) that “changes” at tj and Pj,rot is its “rotated”

version. Thus span(Pj−1) = span([Pj−1,fix,Pj−1,ch]) and span(Pj) = span([Pj−1,fix,Pj,rot])

where Pj−1,fix is an n × (r − 1) matrix that denotes the part of the subspace that remains

“fixed” at tj .

Of course at different tj ’s, the changing directions could be different.

2. Second, the angle of change is small, i.e., for a ∆� 1,

SE(Pj−1,Pj) = SE(Pj−1,ch,Pj,rot) ≤ ∆. (2.4)

Equivalent generative model. With the above model,

Pj,new :=
(I − Pj−1,chPj−1,ch

′)Pj,rot

SE(Pj−1,ch,Pj,rot)

is the newly added direction at tj , θj := cos−1 |Pj−1,ch
′Pj,rot| is the angle by which Pj−1,ch gets

rotated out-of-plane (towards Pj,new which lies in span(Pj−1)⊥) to get Pj,rot. Without loss of

generality, assume 0 ≤ θj ≤ π/2. Thus,

• | sin θj | = sin θj = SE(Pj−1,ch,Pj,rot) = SE(Pj−1,Pj) ≤ ∆, and

11

• Pj,del := Pj−1,ch sin θj − Pj,new cos θj is the direction that got deleted at tj .

We have the following equivalent generative model for getting Pj from Pj−1: let Uj be an r × r

rotation matrix,

Pj = [(Pj−1Uj)[1,r−1]︸ ︷︷ ︸
Pj−1,fix

,Pj,rot], where

Pj,rot := (Pj−1Uj)r︸ ︷︷ ︸
Pj−1,ch

cos θj + Pj,new sin θj (2.5)

For a simple example of this in 3D (n = 3), see Fig. 2.1.

To make our notation easy to remember, we try to explain its meaning better. Consider the

change at tj . The direction from span(Pj−1) that changes is denoted by Pj−1,ch. This changes by

getting rotated (out-of-plane) by a small angle θj towards a new out-of-plane direction Pj,new to

get the changed/rotated direction Pj,rot. Here “plane” refers to the hyperplane span(Pj−1). The

basis for the r − 1-dimensional subspace of span(Pj−1) that does not change at tj is Pj−1,fix. So

Pj = [Pj−1,fix,Pj,rot].

The span of left singular vectors of L is contained in, or equal to,

span([P0,P1,new,P2,new, . . . ,PJ,new]). Equality holds if Pj,new is orthogonal to

span([P0,P1,new, . . . ,Pj−1,new]) for each j.

In this work we have assumed the simplest possible model on subspace change where, at a

change time, only one direction can change. Observe though that, at different change times, the

changing direction could be different and hence, over a long period of time, the entire subspace

could change. This simple model can be generalized to rch > 1 directions changing; see the last

appendix in the ArXiv posting of this work. It is also possible to study the most general case

where rch = r and hence no model is assumed for subspace change (only a bound on the maximum

principal angle of the change). This requires significant changes to both the algorithm and the

guarantee; it is studied in follow-up work [17].

Relation to original RPCA. To connect with the original RPCA problem [5, 14, 20],

define the n × d data matrix Y := [y1,y2, . . .yd] := L + X + V where L, X, V are simi-

12

Pj−1,fixPj−1,ch

Pj,new

span (Pj−1)

span (Pj)

θj

Figure 2.1: Subspace change example in 3D with r = 2.

larly defined. Let rL denote the rank of L and use max-outlier-frac-col and max-outlier-frac-row

to denote the maximum fraction of outliers per column and per row of Y . RPCA re-

sults bound max(max-outlier-frac-row,max-outlier-frac-col). For dynamic RPCA, we will define

max-outlier-frac-row slightly differently. It will be the maximum fraction per row of any n × α

sub-matrix of Y with α consecutive columns. Here α denotes the number of frames used in

each subspace update. We will denote this by max-outlier-frac-rowα to indicate the difference.

Since α is large enough (see (2.9)), the two definitions are only a little different. The dynamic

RPCA assumption of a bound on maxt |Tt|/n is equivalent to bounding max-outlier-frac-col since

max-outlier-frac-col = maxt |Tt|/n. The requirement of Tt’s changing enough is equivalent to a

bound on max-outlier-frac-rowα. As we explain later, the denseness assumption on the P(t)’s is

similar to the denseness (incoherence) of left singular vectors of L assumed by all standard RPCA

solutions, while the assumptions on at’s replace the right singular vectors’ incoherence assumption

of standard RPCA.

2.1.2 Related Work and our Contributions

Related Work. We briefly mention all related work here, but provide a detailed discussion

later in Sec. 2.3. There is very little work on other solutions for provably correct dynamic RPCA.

This includes our early work on a partial guarantee (guarantee required assumptions on intermedi-

13

ate algorithm estimates) [22] and later complete correctness results [16, 34] for more complicated

ReProCS-based algorithms. We refer to all of these as “original-ReProCS”. It also includes older

work on modified-PCP, which is a batch solution for RPCA with partial subspace knowledge, and

which can be shown to also provably solve dynamic RPCA in a piecewise batch fashion [35]. The

original-ReProCS guarantees require strong assumptions on how the outlier support changes (need

a very specific model inspired by a video moving object); their subspace change assumptions are

unrealistic; and their subspace tracking delay (equal to the required delay between subspace change

times) is very large. On the other hand, the Modified-PCP guarantee [35] requires the outlier sup-

port to be uniformly randomly generated (strong assumption; for video, it means that the moving

objects need to be single pixel wide and should be jumping around randomly from frame to frame);

requires a different stronger assumption on subspace change; and cannot detect subspace change

automatically. Other than the above, there is some work on online algorithms for RPCA. The only

work that comes with some guarantee, although it is a partial guarantee, is an online stochastic

optimization based solver for the PCP convex program (ORPCA) [10]. Its guarantee assumed that

the basis matrix for the subspace estimate at each t was full rank. To our best knowledge, there

is no follow-up work on a complete correctness result for it. There is also much work on empirical

online solutions for RPCA, e.g., [12], and older work, e.g., [15, 23]. From a practical standpoint,

any online algorithm will implicitly also provide a tracking solution. However, as shown in Sec.

2.6, the solution is not as good as that of ReProCS which explicitly exploits slow subspace change.

The standard RPCA problem has been extensively studied [5, 6, 14, 20, 33, 7]. We discuss

these works in detail in Sec. 2.3. A summary is provided in Table 2.1. Briefly, these either need

outlier fractions in each row and each column of the observed data matrix to be O(1/rL) (AltProj

[20], GD [33], NO-RMC [7], PCP result of [6, 14], denoted PCP(H)) or need the outlier support

to be uniformly randomly generated (PCP result of [5], denoted PCP(C)). Moreover, all these are

batch solutions with large memory complexity O(nd).

Contributions. We develop a simple algorithm, termed simple-ReProCS or s-ReProCS, for

provably solving the robust subspace tracking or dynamic RPCA problem described earlier. We

14

Table 2.1: Comparing s-ReProCS with other RPCA solutions with complete guarantees. For
simplicity, we ignore all dependence on condition numbers. In this table rL is the rank of the entire
matrix L, while r is the maximum rank of any sub-matrices of consecutive columns of L of the
form L[tj ,tj+1) and thus r ≤ rL. We show the unrealistic assumptions in red.

Algorithm Outlier tolerance Assumptions Memory, Time, # params.

PCP (C) [5] max-outlier-frac-row ∈ O(1) outlier support: uniform random Memory: O(nd) zero

(offline) max-outlier-frac-col ∈ O(1) rL ≤ cmin(n, d)/log2 n Time: O(nd2 1
ε)

PCP (H) [14] max-outlier-frac-row ∈ O(1/rL) Memory: O(nd) 2

(offline) max-outlier-frac-col ∈ O(1/rL) Time: O(nd2 1
ε)

AltProj [20], max-outlier-frac-row = O (1/rL) Memory: O(nd) 2

(offline) max-outlier-frac-col ∈ O (1/rL) Time: O(ndr2
L log 1

ε)

RPCA-GD [33] max-outlier-frac-row ∈ O(1/r1.5
L) Memory: O(nd) 5

(offline) max-outlier-frac-col ∈ O(1/r1.5
L) Time: O(ndrL log 1

ε)

NO-RMC [7] max-outlier-frac-row ∈ O (1/rL) Cn ≥ d ≥ cn Memory: O(nd) 3

(offline) max-outlier-frac-col ∈ O(1/rL) Time: O(nr3
L log2 n log2 1

ε)

s-ReProCS max-outlier-frac-rowα ∈ O(1) most outlier magnitudes lower bounded Memory: O(nr log n) 4

(online) max-outlier-frac-col ∈ O(1/r) slow subspace change Time: O(ndr log 1
ε)

(this work) first Cr samples: AltProj assumptions Detect delay: 2α = Cr log n

Tracking Delay: Kα = Cr log n log(1/ε)

also develop its offline extension that can be directly compared with the standard RPCA results.

Simple-ReProCS is based on the ReProCS framework [22]. Our main contribution is the first

correctness guarantee for dynamic RPCA that holds under weakened versions of standard RPCA

assumptions, slow subspace change, and a lower bound on most outlier magnitudes (this lower

bound is proportional to the rate of subspace change). We say “weakened” because our guarantee

implies that, after initialization, s-ReProCS can tolerate an order-wise larger fraction of outliers per

row than all existing approaches, without requiring the outlier support to be uniformly randomly

generated or without needing any other model on support change. It allows max-outlier-frac-rowα ∈

O(1) (instead of O(1/rL)). For the video application, this implies that it tolerates slow moving and

occasionally static foreground objects much better than other approaches. This fact is also backed

up by comparisons on real videos, see Sec. 2.6 and also see [25].

A second key contribution is the algorithm itself. Unlike original-ReProCS [16, 34], s-ReProCS

ensures that the estimated subspace dimension is bounded by (r+1) at all times without needing the

complicated cluster-EVD step. More importantly, s-ReProCS is provably fast and memory-efficient:

15

its time complexity is comparable to that of SVD for vanilla PCA, and its memory complexity is

near-optimal and equal to O(nr log n log(1/ε̃)) where ε̃ is the desired subspace recovery accuracy.

This is near-optimal because nr is the memory needed to output an r-dimensional subspace estimate

in Rn, and the complexity is within log factors of the optimal. To our best knowledge, s-ReProCS

is the first provably correct RPCA or dynamic RPCA solution that is as fast as the best RPCA

solution in terms of computational complexity without requiring the data matrix to be nearly square

and has near-optimal memory complexity. We provide a tabular comparison of guarantees of offline

s-ReProCS with other provable RPCA solutions in Table 2.1. We compare s-ReProCS with other

online or tracking solutions for RPCA or dynamic RPCA in Table 2.2 (original-ReProCS, modified-

PCP, follow-up work on RePrOCS-NORST [19, 17], ORPCA and GRASTA).

We give a significantly shorter and simpler proof than that for the earlier guarantees for

ReProCS-based methods. We do this by first separately proving a result for the problem of

“correlated-PCA” or “PCA in data-dependent noise” [26, 27] with partial subspace knowledge.

This result given in Theorem 2.7 of Sec. 2.5.1 may also be of independent interest.

2.1.3 The need for a piecewise constant model on subspace change

We explain why the piecewise-constant subspace change model is needed. Even if the observed

data were perfect (no noise/outlier/missing-data, i.e., we observed `t, and all measurements were

linearly independent) and the previous subspace were exactly known, in order to obtain a correct

r-dimensional estimate1 for each P(t), one would need at least r samples. Of course, to just find

the newly added direction Pj,new and use an (r+ 1)-dimensional estimate, one sample would suffice

in this ideal setting (doing this will be especially problematic if the subspace changes at each time

because it will mean the estimated subspace dimension will keep growing as r + t at time t). Our

actual setting is not this ideal one: we know the previous subspace only up to ε error and we observe

yt which is a noisy and outlier-corrupted version of `t. This is why, in our setting, more than one

data samples are needed even to accurately estimate the newly added direction. Since we get only

1requires finding both the newly added direction, Pj,new, and the deleted direction, Pj,del

16

one observed data vector yt at each time, the only way to have enough data samples for estimating

each subspace is to assume that P(t) is piecewise constant with time, i.e., it satisfies (2.2). In fact,

our required lower bound on tj+1 − tj is only a little more than r (see Theorem 2.2), thus making

our model a good approximation to slow continuous subspace change.

Furthermore, the following point should be mentioned. In the entire literature on subspace

tracking (both with and without outliers, and with and without even missing data), there is no

model for subspace change for which there are any provable guarantees. There is no work on

provable subspace tracking with outliers (robust subspace tracking) except our own previous work

which also used the piecewise constant subspace change model. The subspace tracking (ST) problem

(without outliers), and with or without missing data, has been extensively studied [31, 32, 1, 2, 8, 3];

however, all existing guarantees are asymptotic results for the statistically stationary setting of data

being generated from a single unknown subspace. Moreover, most of these also make assumptions

on intermediate algorithm estimates. For a longer discussion of this, please see [28].

2.1.4 Chapter Organization

The proposed algorithm, simple-ReProCS, and its performance guarantees, Theorem 2.2, are

given in Sec. 2.2. We discuss the related work in detail in Sec. 2.3 and explain how our guarantee

compares with other provable results on RPCA or dynamic RPCA from the literature. Sec. 2.4

provides the main ideas that lead to the proof of Theorem 2.2. We prove Theorem 2.2 under the

assumption that the subspace change times are known in Sec. 2.5. This proof helps illustrate

all the ideas of the actual proof but with minimal notation. The general proof of Theorem 2.2 is

given in Appendix 2.9. Theorem 2.2 relies on a guarantee for PCA in data-dependent noise [26, 27]

when partial subspace knowledge is available. This result is proved in Appendix 2.10. We provide

detailed empirical evaluation evaluation of simple-ReProCS in Sec. 2.6. We conclude and discuss

future directions in Sec. 2.7.

17

Table 2.2: Comparing s-ReProCS with online or tracking approaches for RPCA. We show the
unrealistic assumptions in red. Here, f denotes the condition number of Λ, r is the maximum
dimension of the subspace at any time, and rL refers to the rank of matrix L. Thus r ≤ rL. Here,
s-ReProCS-no-delete refers to Algorithm 4 without the subpace deletion step.

Algorithm Outlier tolerance Assumptions Memory, Time

orig-ReProCS [34, 16] max-outlier-frac-rowα ∈ O(1/f2) outlier support: moving object model, Memory: O(nr2/ε2)

(online) max-outlier-frac-col ∈ O(1/rL) unrealistic subspace change model, Time: O(ndr log 1
ε)

changed eigenvalues small for some time, Detect Delay: 2α = Cr2 logn
ε2

outlier mag. lower bounded, Tracking Delay: Kα = Cr2 logn log(1/ε)
ε2

xmin ≥ 14[cγnew +
√
ε̃(
√
r +
√
c)]

where, γnew quantifies slow subspace change

init data: AltProj assumptions,

d ≥ Cr2/ε2

Modified-PCP [35] max-outlier-frac-rowα ∈ O(1) outlier support: uniform random Memory: O(nr log2 n)

(piecewise batch) max-outlier-frac-col ∈ O(1) unrealistic subspace change model Time: O(ndr log2 n
ε)

rL ≤ cmin(n, d)/log2 n Detect delay: ∞

ORPCA [10] Has a partial guarantee – assumes algorithm estimates at each time t are full rank

GRASTA [12] Has no theoretical guarantees

s-ReProCS max-outlier-frac-rowα ∈ O(1/f2) most outlier magnitudes lower bounded Memory: O(nr log n)

(online) max-outlier-frac-col ∈ O(1/r) xmin ≥ 15C(2ε̃
√
rλ+ + ∆

√
λch) Time: O(ndr log 1

ε)

(this work) slow subspace change Detect delay: 2α = Cr log n

first Cr samples: AltProj assumptions Tracking Delay: Kα = Cr log n log(1/ε)

s-ReProCS-no-delete max-outlier-frac-rowα ∈ O(1) most outlier magnitudes lower bounded Memory: O(nr log n)

(online) max-outlier-frac-col ∈ O(1/rL) xmin ≥ 15C(2ε̃
√
rλ+ + ∆

√
λch) Time: O(ndr log 1

ε)

(this work) slow subspace change Detect delay: 2α = Cr log n

first Cr samples: AltProj assumptions Tracking Delay: Kα = Cr log n log(1/ε)

ReProCS-NORST max-outlier-frac-row = O(1/f2) outlier mag. lower bounded Memory: O(nr log n log 1
ε)

[18, 17] (online) max-outlier-frac-col = O(1/r) xmin ≥ C1

√
rλ+(∆ + 2ε̃) Time: O(ndr log 1

ε)

(follow-up slow subspace change or fixed subspace Detect delay: Cr log n

to this work) first Cr samples: AltProj assumptions Tracking Delay: Cr log n log(1/ε)

2.2 The simple-ReProCS Algorithm and its Guarantee

2.2.1 Simple-ReProCS (s-ReProCS)

S-ReProCS proceeds as follows. The initial subspace is assumed to be accurately known (ob-

tained using AltProj or PCP). At time t, if the previous subspace estimate, P̂(t−1), is accurate

enough, because of slow subspace change, projecting yt = xt + `t + vt onto its orthogonal com-

plement will nullify most of `t. Moreover, ‖vt‖ is small (by assumption). We compute ỹt := Ψyt

where Ψ := I − P̂(t−1)P̂(t−1)
′. Thus, ỹt = Ψxt + bt where bt := Ψ(`t + vt) and ‖bt‖ is small.

Recovering xt from ỹt is thus a traditional compressive sensing (CS) / sparse recovery problem

18

in small noise [4]. This is solvable because incoherence (denseness) of P(t)’s and slow subspace

change implies [22] that Ψ satisfies the restricted isometry property [4]. We compute x̂t,cs using l1

minimization followed by thresholding based support estimation to get T̂t. A Least Squares (LS)

based debiasing step on T̂t returns the final x̂t. We then estimate `t as ˆ̀
t = yt − x̂t. We refer to

the above step as Projected Compressive Sensing (CS). As explained in [25, 28], this can also be

understood as solving a Robust Regression problem2.

The ˆ̀
t’s are used for the Subspace Update step which involves (i) detecting subspace change; (ii)

obtaining improved estimates of the changed direction(s) by K steps of projection-SVD [22], each

done with a new set of α frames of ˆ̀
t; and (iii) a simple SVD based subspace re-estimation step,

done with another new set of α frames. This is done to remove the deleted direction and get an

r-dimensional estimate of the new subspace. We explain the subspace change detection strategy in

Sec. 2.4.2. Suppose the change is detected at t̂j . The k-th projection-SVD step involves computing

P̂j,rot,k as the top singular vector of (I − P̂j−1P̂j−1
′)[ˆ̀̂tj+(k−1)α,

ˆ̀̂
tj+(k−1)α+1, . . . ,

ˆ̀̂
tj+kα−1] and

setting P̂(t) = P̂j,k := [P̂j−1, P̂j,rot,k]. For ease of understanding, we summarize a basic version of

s-ReProCS in Algorithm 1. This assumes that the change times tj are known, i.e., that t̂j = tj .

The actual algorithm that detects changes automatically is longer and is given as Algorithm 4 in

Sec. 2.4.2. We both analyze and implement this one.

The above approach works because, every time the subspace changes, with high probability

(whp), the change can be detected within a short delay, and after that, the K projection-SVD

steps help get progressively improved estimates of the changed/rotated direction Pj,rot. The final

simple SVD step re-estimates the entire subspace in order to delete Pj,del, from the estimate.

The estimates of the subspace or of `t’s are improved in offline mode as follows. At t = t̂j+Kα,

the K projection-SVD steps are complete and hence the subspace estimate at this time is accurate

enough whp. At this time, offline s-ReProCS (last line of Algorithm 4) goes back and sets P̂(t) ←

2The above step equivalently solves for ã, x̃ that satisfy yt = P̂t−1ã + x̃ + bt with x̃ being sparse and ‖bt‖ being
small. This is the approximate robust regression problem where columns of P̂t−1 are the regressors/predictors, x̃ is
the sparse outliers and bt is the small “noise” or model inaccuracy.

19

[P̂j−1, P̂j,rot,K] for all t ∈ [t̂j−1 + Kα, t̂j + Kα). It also uses this to get improved estimates of x̂t

and ˆ̀
t for all these times t.

2.2.2 Assumptions and Main Result

Incoherence (denseness) of columns of Pj’s. In order to separate the `t’s from the sparse

outliers xt, we need an assumption that ensures that the `t’s are themselves not sparse. One way

to ensure this is to assume µ-incoherence [5] of the basis matrix for the subspace spanned by the

columns of Pj−1 and Pj , i.e., assume that

max
j=1,2,...,J

max
i=1,2,...,n

‖ basis([Pj−1,Pj])
i‖ ≤

√
µ(r + 1)

n
(2.6)

for a µ ≥ 1 but not too large (assumed to be a numerical constant henceforth). Because of our

subspace change model, the subspace spanned by the columns of [Pj−1,Pj] has dimension r + 1.

In fact, basis([Pj−1,Pj]) = [Pj−1,Pj,new].

It is easy to see that (2.6), along with the bound on max-outlier-frac-col assumed in Theorem

2.2 given below (max-outlier-frac-col ≤ 0.01/(2µ(r + 1))), implies that (2.13) given later holds3.

Our result actually only needs (2.13), but that is complicated to state and explain. Hence we use

the above stronger but well-understood assumption.

Assumption on principal subspace coefficients at. We assume that the at’s are zero

mean, mutually independent, element-wise bounded random variables (r.v.), have identical and

diagonal covariance matrix denoted Λ, and are independent of the outlier supports Tt. Here element-

wise bounded means that there exists a numerical constant η, such that

max
j=1,2,...r

max
t

(at)
2
j

λj(Λ)
≤ η.

For most bounded distributions, η is a little more than one, e.g., if the entries of at are zero mean

uniform, then η = 3. As we explain later the above assumptions of at replace the right singular

vectors’ incoherence assumption used by all standard RPCA solutions.

3This is true because (i) for any basis matrix P , maxT :|T |≤2s ‖IT ′P ‖2 ≤ 2smaxi ‖Ii′P ‖2 [22], here s =

max-outlier-frac-col · n; (ii) if P̃ is such that span(P̃) ⊆ span(P), then ‖IT ′P̃ ‖2 ≤ ‖IT ′P ‖2; and (iii) both span(Pj)
and span(Pj,new) are contained in the span of basis([Pj−1,Pj]). In fact basis([Pj−1,Pj]) = [Pj−1,Pj,new]. Thus,
using the max-outlier-frac-col bound, maxT :|T |≤2s ‖IT ′Pj‖2 ≤ 2sµ(r + 1)/n = 2max-outlier-frac-colµ(r + 1) ≤ 0.01
and the same also holds for maxT :|T |≤2s ‖IT ′Pj,new‖2.

20

Outlier fractions bounded. Similar to earlier RPCA works, we also need outlier fractions

to be bounded. However, we need different bounds on this fraction per column and per row.

The row bound can be much larger4. Since the ReProCS subspace update step operates on mini-

batches of data of size α (i.e. on n × α sub-matrices of consecutive columns), we need to bound

max-outlier-frac-row for each such sub-matrix. We denote this by max-outlier-frac-rowα.

Definition 2.1.

1. For a time interval, J , define

γ(J) := max
i=1,2,...,n

1

|J |
∑
t∈J

1{i∈Tt}. (2.7)

Thus γ(J) is the maximum outlier fraction in any row of the sub-matrix YJ of Y . Let J α

denote a time interval of duration α. Define

max-outlier-frac-rowα := max
J α⊆[t1,d]

γ(J α). (2.8)

2. Define max-outlier-frac-col := maxt |Tt|/n.

3. Let xmin := mint mini∈Tt |(xt)i| denote the minimum outlier magnitude.

4. Use λ− and λ+ to denote the minimum and maximum eigenvalues of Λ and f := λ+

λ− its

condition number.

5. Split at as at =

at,fix

at,ch

 where at,ch is the scalar coefficient corresponding to the changed

direction. Similarly split its diagonal covariance matrix as Λ =

Λfix 0

0 λch

.

6. Let ε̃ denote the bound on initial subspace error, i.e., let SE(P̂0,P0) ≤ ε̃.

7. For numerical constants C that are re-used to denote different numerical values, define

K := dC log(∆/ε̃)e, and α ≥ α∗ := Cf2(r log n). (2.9)

4One practical application where this is useful is for slow moving or occasionally static video foreground moving
objects. For a stylized example of this, see Model 2.19 given in Sec. 2.6.

21

Main Result. We can now state our main result. For ease of understanding, we provide a

table explaining various symbols, and assumptions required for Theorem 2.2 in Table 2.3.

Theorem 2.2. Consider simple-ReProCS given in Algorithm 4. Assume that SE(P̂0,P0) ≤ ε̃ with

ε̃f ≤ 0.01SE(Pj−1,Pj).

1. (statistical assumptions) assumptions on at’s hold;

2. (subspace change)

(a) (2.2), (2.3), and (2.4) hold with tj+1 − tj > (K + 3)α where K and α are defined above

in (2.9),

(b) ∆ satisfies C(2ε̃
√
rλ+ + ∆

√
λch) < xmin/15 with C =

√
η;

3. (outlier fractions and left incoherence)

(a) (2.6) holds and max-outlier-frac-col ≤ ρcol := 0.01
2µ(r+1) ,

(b) max-outlier-frac-rowα ≤ ρrow := 0.01
f2 ;

4. (noise vt) vt’s are zero mean, mutually independent, independent of the xt’s and `t’s, and

satisfy ‖vt‖2 ≤ 0.1ε̃2rλ+ and ‖E[vtvt
′]‖ ≤ 0.1ε̃2λ+;

5. (algorithm parameters) set K and α as in (2.9), ξ = xmin/15, ωsupp = xmin/2, ωevals =

5ε̃2fλ+;

then, with probability at least 1− 12dn−12, at all times, t,

1. T̂t = Tt,

2. tj ≤ t̂j ≤ tj + 2α,

22

3. SE(P̂(t),P(t)) ≤



2ε̃+ ∆ if t ∈ [tj , t̂j + α)

1.2ε̃+ (0.5)k−20.06∆ if t ∈ [t̂j + (k − 1)α, t̂j + kα)

2ε̃ if t ∈ [t̂j +Kα, t̂j +Kα+ α)

ε̃ if t ∈ [t̂j +Kα+ α, tj+1)

4. and ‖x̂t − xt‖ = ‖ ˆ̀
t − `t‖ ≤ C(ε̃

√
rλ+ + SE(P̂(t),P(t))

√
λch with SE(P̂(t),P(t)) bounded as

above.

Consider offline s-ReProCS (last line of Algorithm 4). At all t,

SE(P̂ offline
(t) ,P(t)) ≤ 2ε̃, and ‖ ˆ̀offline

t − `t‖ ≤ 2.4ε̃‖`t‖.

The upper bound on vt and the lower bound on xmin can be relaxed significantly to get a more

complicated result which we state in the corollary below.

Corollary 2.3. Let xmin,t := mini∈Tt |(xt)i| denote the minimum outlier magnitude at time t and

define the time intervals

• J0 = [tj , t̂j) (interval before the change gets detected),

• Jk := [t̂j + (k − 1)α, t̂j + kα) (k-th subspace update uses data from this interval) for k =

1, 2, 3, . . . ,K,

• and JK+1 := [t̂j +Kα, t̂j +Kα+ α) (final SVD-based re-estimation step uses data from this

interval).

All conclusions of Theorem 2.2 hold if the following hold instead of assumptions 1b, 4, and 5 of

Theorem 2.2:

vt’s are zero mean, mutually independent, independent of the xt’s and `t’s, ‖vt‖ ≤ bv,t,

‖E[vtvt
′]‖ ≤ b2v,t/r, xmin,t and bv,t satisfy the following:

1. for t ∈ J0 ∪ J1, bv,t = C(2ε̃
√
rλ+ + 0.11∆

√
λch), and xmin,t ≥ 30bv,t,

23

2. for t ∈ Jk, bv,t = C(2ε̃
√
rλ+ + 0.5k−20.06∆

√
λch), and xmin,t ≥ 30bv,t, for k = 2, . . . ,K,

3. for t ∈ JK+1, bv,t = C(ε̃
√
rλ+) and xmin,t ≥ 30bv,t

with C =
√
η; and we set ωsupp,t = xmin,t/2, and ξt = xmin,t/15 (alternatively, one can also set

ωsupp,t and ξt to be proportional to bv,t which itself is proportional to the bound on ‖xt− x̂t‖ is each

interval).

Proof. We explain the ideas leading to the proof in Sec. 2.4. Instead of first proving Theorem 2.2

and then Corollary 2.3, we directly only prove the latter. The proof of the former is almost the

same and is immediate once the latter proof can be understood. For notational simplicity, we first

prove the results under the assumption t̂j = tj in Sec. 2.5. The proof without assuming t̂j = tj is

given in Appendix 2.9.

With the above corollary, the following remark is immediate.

Remark 2.4 (Bi-level outliers). The lower bound on outlier magnitudes can be relaxed to the

following which only requires that most outlier magnitudes are lower bounded, while the others have

small enough magnitudes so that their squared sum is upper bounded: Assume that the outlier

magnitudes are such that the following holds: xt can be split as xt = (xt)small + (xt)large with the

two components having disjoint supports and being such that, ‖(xt)small‖ ≤ bv,t and the smallest

nonzero entry of (xt)large is greater than 30bv,t with bv,t as defined in Corollary 2.3. If the above

is true, and if the vectors (xt)small are zero mean, mutually independent, and independent of `t’s

and of the support of (xt)large, then all conclusions of Theorem 2.2 hold except the exact support

recovery conclusion (this gets replaced by exact recovery of the support of (xt)large).

This remark follows by replacing vt by vt + (xt)small and xt by (xt)large in Corollary 2.3.

Remark 2.5. The first condition (accurate initial estimate) can be satisfied by applying any stan-

dard RPCA solution, e.g., PCP, AltProj, or GD, on the first ttrain = Cr data frames. This requires

assuming that t1 ≥ Cr, and that Y[1,ttrain] has outlier fractions in any row or column bounded by

c/r. Moreover, it is possible to significantly relax the initial estimate requirement to only requiring

24

Algorithm 1 Simple-ReProCS (with tj known). We state this first for simplicity. The actual automatic

version is given later in Algorithm 4. Let L̂t;α := [ˆ̀t−α+1, ˆ̀
t−α+2, . . . , ˆ̀

t].

1: Input: P̂0, yt, Output: x̂t, ˆ̀
t, P̂(t), Parameters: ωsupp, K, α, ξ, r, tj ’s

2: P̂(ttrain) ← P̂0; j ← 1, k ← 1

3: for t > ttrain do

4: (x̂t, T̂t) ← ProjCS(P̂(t−1), yt) . Algorithm 2

5: ˆ̀
t ← yt − x̂t.

6: (P̂(t), P̂j , j, k) ← SubUp(L̂t;α, P̂j−1, t, tj , j, k, P̂(t−1)) . Algorithm 3

7: end for

that SE(P̂0,P0) ≤ c/
√
r if we use K iterations of the approach of follow-up work [17] to improve

the estimate of P0 until a ε̃ accurate estimate is obtained, and then run s-ReProCS. For this to

work, we will need a larger lower bound on xmin for the initial period.

Remark 2.6 (Connecting to the left incoherence of standard RPCA solutions). With mi-

nor changes, our left incoherence assumption, (2.6), can be replaced by something that is very

close to the one used by all standard RPCA solutions. Instead of (2.6), we can assume µ-

incoherence of basis([P0,P1,new,P2,new, . . . ,PJ,new]). This implies that5 the RHS of (2.6) is

bounded by
√
µ(r + J)/n. With this, the only change to Theorem 2.2 will be that we will need

max-outlier-frac-col ≤ 0.01/(2µ(r + J)).

If Pj,new is orthogonal to span([P0,P1,new, . . . ,Pj−1,new]) for each j, then the matrix

[P0,P1,new,P2,new, . . . ,PJ,new] is itself a basis matrix, its span is equal to that of the left singu-

lar vectors of L, and its rank r+ J = rL. In this case, the above assumption and the corresponding

required bound on max-outlier-frac-col are exactly the same as those used by the standard RPCA

solutions.

2.2.3 Discussion

In this section, we discuss the various implications of our result, the speed and memory guar-

antees, explain how to set algorithm parameters, and finally discuss its limitations.

5follows because the union of the spans of Pj−1 and Pj is contained in the span of [P0,P1,new,P2,new, . . . ,PJ,new].

25

Algorithm 2 Projected CS (ProjCS)

function ProjCS(P̂(t−1), yt)

Ψ← I − P̂(t−1)P̂(t−1)
′

ỹt ← Ψyt
x̂t,cs ← arg minx̃ ‖x̃‖1 s.t ‖ỹt −Ψx̃‖ ≤ ξ
T̂t ← {i : |x̂t,cs| > ωsupp}
x̂t ← IT̂t(ΨT̂t

′ΨT̂t)
−1ΨT̂t

′ỹt

return x̂t, T̂t
end function

Algorithm 3 Subspace Update (SubUpd).

function SubUp(L̂t;α, P̂j−1, t, tj , j, k, P̂(t−1))

if t = tj + uα for u = 1, 2, · · · ,K + 1 then

B ← (I − P̂j−1P̂j−1
′)L̂t;α

P̂j,rot,k ← SV D1[B] . subspace addition: via K steps of projection-SVD

P̂(t) ← [P̂j−1, P̂j,rot,k], k ← k + 1.

if k = K + 1 then

P̂j ← SV Dr[L̂t;α] . subspace deletion: via subspace re-estimation using simple SVD

P̂(t) ← P̂j , j ← j + 1, k ← 1.

end if

else

P̂(t) ← P̂(t−1)

end if

return P̂(t), P̂j , j, k

end function

Subspace change detection and tracking with short delay. Theorem 2.2 shows that,

whp, the subspace change gets detected within a delay of at most 2α = Cf2(r log n) frames, and the

subspace gets estimated accurately within at most (K + 3)α = Cf2(r log n) log(1/ε̃) frames. Each

column of the low rank matrix is recovered with a small time-invariant bound without any delay.

If offline processing is allowed, with a delay of at most (K + 3)α, we can guarantee all recoveries

within normalized error ε̃, or, in fact, with minor modifications, within any ε = cε̃ for c < 1 (also

see the limitations’ discussion). Notice that the required delay between subspace change times is

more than r by only logarithmic factors (assuming f does not grow with n or r). Since the previous

subspace is not exactly known (is known within error at most ε̃), at each update step, we do need

to estimate an r-dimensional subspace, and not a one-dimensional one. Hence it is not clear if

26

the required delay can be reduced any further. Moreover, the delay required for the deletion step

cannot be less than r even in the ideal case when `t is directly observed.

Bi-level outliers. Consider the upper bound on ∆ (amount of subspace change). Observe

that the upper bound essentially depends on the ratio between xmin (minimum outlier magnitude)

and
√
λch. Read another way, this means that xmin needs to be lower bounded. On first glance,

this may seem counter-intuitive since sufficiently small magnitude corruptions should not be prob-

lematic. This is actually true. Sufficiently small magnitude corruptions get classified as the small

noise vt. Moreover, as noted in Corollary 2.3 and Remark 2.4, our result actually allows “bi-level”

corruptions/outliers that need to satisfy a much weaker requirement than this: the large-outliers

have magnitude that is “large enough”, while the rest are such that the squared sum of their mag-

nitudes is “small enough”. The threshold for both “large enough” and “small enough” decreases

with each subspace update step.

Order-wise improvement in allowed upper bound on maximum number of outliers

per row. As pointed out in [20], solutions for standard RPCA (that only assume incoherence of

left and right singular vectors of L and nothing else, i.e., no outlier support model) cannot tolerate6

a bound on maximum outlier fractions in any row or any column that is larger than 1/rL. However

observe that simple-ReProCS can tolerate max-outlier-frac-rowα ∈ O(1) (this assumes f is a con-

stant). This is a significant improvement over all existing RPCA results with important practical

implications for video analytics. This is possible is because s-ReProCS uses extra assumptions, we

explain their next.

The need for extra assumptions. s-ReProCS recovers the sparse outliers xt first and then

the true data `t, and does this at each time t. Let Ψ := I − P̂(t−1)P̂(t−1)
′. When recovering xt, it

exploits two facts: (a) the subspace of `t, P(t), satisfies the denseness/incoherence property, and (b)

“good” knowledge of the subspace of `t (either from initialization or from the previous subspace’s

6The reason is this: let ρrow = max-outlier-frac-row, one can construct a matrix X with ρrow outliers in some
rows that has rank equal to 1/ρrow. A simple way to do this would be to let the support and nonzero entries of X
be constant for ρrowd columns before letting either of them change. Then the rank of X will be d/(ρrowd) = 1/ρrow.
If 1/ρrow < rL = rank(L), X will wrongly get classified as the low-rank component. This is why we need ρrow =
max-outlier-frac-row < 1/rL. A similar argument can be used for max-outlier-frac-col.

27

estimate and slow subspace change) is available. Using these two facts one can show that Ψ satisfies

the RIP property, and that the “noise” seen by the compressive sensing step, bt := Ψ(`t + vt), is

small. This, along with a guarantee for CS, helps ensure that the error in recovering xt is upper

bounded7 by C‖bt‖. This, in turn, means that, to correctly recover the support of xt, the minimum

large-outlier magnitude needs to be larger than C‖bt‖. This is where the xmin or xmin,t lower bound

comes from8.

Correct outlier support recovery is needed to ensure that the subspace estimate can be improved

with each subspace update step. In particular, it helps ensure that the error vectors et := xt −

x̂t in a given subspace update interval are mutually independent when conditioned on the yt’s

from all past intervals. This fact also relies on the mutual independence assumption on the at’s.

Moreover, mutual independence, along with the element-wise boundedness and identical covariances

assumption, on the at’s helps ensure that we can use matrix Bernstein [24] and Vershynin’s sub-

Gaussian result (bounds singular values of matrices with independent sub-Gaussian rows) [29]

for obtaining the desired concentration bounds on the subspace recovery error in each step. As

explained below, the above assumptions on at replace the right incoherence assumption. Finally,

because ReProCS is updating the subspace using just the past α estimates of ˆ̀
t’s, in order to show

that each such step improves the estimate we need to bound max-outlier-frac-rowα (instead of just

max-outlier-frac-row).

Time and Memory Complexity. Observe that the s-ReProCS algorithm needs memory

of order nα in online mode and Knα in offline mode. Assuming α = α∗, even in offline mode,

its memory complexity is near-optimal and equal to O(nr log n log(1/ε̃)). Also, observe that the

time complexity of s-ReProCS is O(ndr log(1/ε̃)). We explain this in Appendix 2.14. These claims

7Since the individual vector bt does not have any structure that can be exploited, the error in recovering xt cannot
be made lower than this. However the bt’s arranged into a matrix do form a low-rank matrix whose approximate
rank can be shown to be one (under our current subspace change model). If we try to exploit this structure we end
up with the modified-PCP approach studied in earlier work [35]. This needs the uniform random support assumption
[35].

8If there were a way to bound the element-wise error of the CS step (instead of the l2 norm of the error), we could
relax the xmin lower bound significantly. It is not clear if this is possible though.

28

assume that f is constant with n, r. If the dependence on f is included both will be multiplied by

f2.

Subspace and outlier assumptions’ tradeoff. When there are fewer outliers in the

data or when outliers are easy to detect, one would expect to need weaker assumptions on the

true data subspace or its rate of change. This is indeed true. For the original RPCA results,

this is encoded in the condition max(max-outlier-frac-row,max-outlier-frac-col) ≤ c/(µrL) where µ

quantifies not-denseness of both left and right singular vectors. From Theorem 2.2, this is also how

max-outlier-frac-col, µ (not-denseness of only left singular vectors) and rL are related for dynamic

RPCA. On the other hand, for our result, max-outlier-frac-rowα and the lower bound on xmin govern

the allowed rate of subspace change. The latter relation is easily evident from the bound on ∆. If

xmin is larger (outliers are large magnitude and hence easy to detect), a larger ∆ can be tolerated.

The relation of max-outlier-frac-row to rate of change is not evident from the way the guarantee

is stated in Theorem 2.2. The reason is we have assumed max-outlier-frac-rowα ≤ ρrow = 0.01/f2

and used that to get a simple expression for K. If we did not do this, we would need K to satisfy

c1∆(c2f
√
ρrow)K + 0.2ε̃ ≤ ε̃.

With this, K needs to be K = d 1
− log(c2f

√
ρrow) log(c1∆

0.8ε̃)e. Recall that we need tj+1− tj ≥ (K + 3)α.

Thus, a smaller ρrow (smaller max-outlier-frac-rowα) means one of two things: either a larger ∆

(more change at each subspace change time) can be tolerated while keeping K, and hence the lower

bound on the delay between change times, the same; or, for ∆ fixed, a smaller lower bound is

needed on the delay between change time. The above can be understood by carefully checking the

proof9 of Theorem 2.7.

The need for detecting subspace change. As pointed out by an anonymous reviewer,

it may not be clear to a reader why we need to explicitly detect subspace change (instead of just

always doing subspace update at regularly spaced intervals). The change detection is needed for

two key reasons. First, in the projection-SVD step for subspace update, we use P̂j−1 as the best

9The multiplier 0.4 of qrot in its first claim is obtained by setting ρrow = 0.01/f2. If we do not do this, 0.4 will
get replaced by c2f

√
ρrow.

29

estimate of the previous subspace. We let P̂j−1 be the final ε̃-accurate subspace estimate obtained

after K projection-SVD steps and then one subspace re-estimation step. To know when the K

updates are over, we need to know when the first update of the new subspace occurred, or in

other words, we need an estimate of when the subspace change occurred. Second, in the current

algorithm, because we detect change, we can choose to use the ˆ̀
t’s from the next α-frame interval,

i.e. [ˆ̀̂tj+1,
ˆ̀̂
tj+2, . . . ,

ˆ̀̂
tj+α

], for the first subspace update. This ensures that the ˆ̀
t’s from the

interval that contains tj (some of the `t’s in this interval come from Pj−1 while others come from

Pj) is never used further in any subspace update. The is essential because, if these are used, one

will get an incorrect subspace estimate (something in between Pj−1 and Pj) and one whose error

cannot easily be bounded. If subspace change is never detected, this cannot be ensured.

Algorithm parameters. Observe from Theorem 2.2 that we need knowledge of only 4

model parameters - r, λ+, λ− and xmin - to set our algorithm parameters. The initial dataset

used for estimating P̂0 (using PCP/AltProj) can also be used to get an accurate estimate of r,

λ− and λ+ using standard techniques (maximum likelihood applied to the AltProj estimate of

[`1, `2, . . . , `ttrain]). Thus one really only needs to set xmin. If continuity over time is assumed, a

simple heuristic is to let it be time-varying and use mini∈T̂t−1
|(x̂t−1)i| as its estimate at time t.

This approach in fact allows us to estimate xmin,t and thus allows for larger unstructured noise, vt,

levels as allowed by Corollary 2.3.

The most interesting point for practice though is that of Remark 2.4. It indicates that when a

subspace change is detected but not estimated, starting at the previous 2α frames, one should use

a larger value of the support estimation threshold ωsupp. After each subspace update step, ωsupp

should be decreased roughly exponentially.

Dependence on f . Observe that f appears in our guarantee in the bound on

max-outlier-frac-rowα and in the expression for α. The max-outlier-frac-rowα bound is stated that

way only for simplicity. Actually, for all time instants except the α-length period when the subspace

re-estimation (for deletion) step is run, we only need max-outlier-frac-rowα ≤ 0.01. We need the

tighter bound max-outlier-frac-rowα ≤ ρrow = 0.01/f2 only for the simple SVD based subspace re-

30

estimation (deletion) step to work (i.e., only for t ∈ [t̂j+Kα, t̂j+Kα+α)). Thus, if offline ReProCS

were being used to solve the standard RPCA type problem (where rL is nicely bounded), one could

choose to never run the subspace deletion step. This will mean that the resulting algorithm (s-

ReProCS-no-delete) will need max-outlier-frac-col < c/µrL, but then max-outlier-frac-row < 0.01

will suffice (the bound would not depend on 1/f2). The α expression governs required delay be-

tween subspace change times, tracking delay, and time and memory complexity. If the deletion step

is removed, the dependence of α on f will not disappear, but will weaken (it will linearly depend

on f not on f2).

We now try to relate f to the condition number of L. Observe that f is the condition number

of E[LjLj
′] for any j. The condition number of the entire matrix L can be much larger when slow

subspace change holds (∆ is small). To see this, let κ2 denote the condition number of E[LL′], so

that, whp, κ is approximately the condition number of L. It is not hard to to see that10, in the

worst case (if λ− = λch), κ2 = f

1−
√

1−2c∆2
≈ C f

∆2 when ∆ is small. Thus, if ∆ is small, κ ≈ C
√
f/∆

can be much larger than f . The guarantees of many of the RPCA solutions such as RPCA-GD

[33] depend on κ.

Relating our assumptions to right incoherence of Lj := L[tj ,tj+1) [14]. We repeat this

discussion from [17]. From our assumptions, Lj = PjAj with Aj := [atj ,atj+1, . . .atj+1−1], the

columns of Aj are zero mean, mutually independent, have identical covariance Λ, Λ is diagonal,

and are element-wise bounded as specified by Theorem 2.2. Let dj := tj+1 − tj . Define a diagonal

matrix Σ with (i, i)-th entry σi and with σ2
i :=

∑
t(at)

2
i /dj . Define a dj × r matrix Ṽ with the t-th

entry of the i-th column being (ṽi)t := (at)i/(σi
√
dj). Then, Lj = PjΣṼ ′ and each column of Ṽ

is unit 2-norm. Also, from the bounded-ness assumption, (ṽi)
2
t ≤ η λi

σ2
i
· 1
dj

where η is a numerical

constant. Observe that PjΣṼ ′ is not exactly the SVD of Lj since the columns of Ṽ are not

necessarily exactly mutually orthogonal. However, if dj is large enough, using the assumptions on

10To understand this, suppose that there is only one subspace change and suppose that the intervals are
equal, i.e., d − t1 = t1 − t0. Then, E[LL′]/d = P0,fixΛfixP0,fix

′ + [P0,ch P1,new]B[P0,ch
′ P1,new

′]′ where B =

λch

[
(0.5 + 0.5 cos2 θ1) −0.5 sin θ1 cos θ1

−0.5 sin θ1 cos θ1 0.5 sin2 θ1

]
. The maximum eigenvalue of E[LL′]/d is λ+. Its minimum eigenvalue is

the minimum eigenvalue of B which can be computed as (1 − cos θ1)λch. In the worst case λch = λ−. When the

intervals are not equal, this gets replaced by (1−
√

1− 2c sin2 θ1)λ− for a c < 1. This is at most (1−
√

1− 2c∆2).

31

at, one can argue using any law of large numbers’ result (e.g., Hoeffding inequality), that (i) the

columns of Ṽ are approximately mutually orthogonal whp, and (ii) σ2
i ≥ 0.99λi whp. Thus, our

assumptions imply that, whp, Ṽ is a basis matrix and (ṽi)
2
t ≤ C/dj .

With the above, one can interpret Ṽ as an “approximation” to the right singular vectors of Lj

and then the above bound on (ṽi)
2
t is the same as the right incoherence condition assumed by [14].

It is slightly stronger than what is assumed by [5, 20] and others (these do not require a bound on

each entry but on each row, they require that the squared norm of each row of the matrix of right

singular vectors be bounded by Cr/dj).

Ideally we would like to work with the exact SVD of Lj , however this is much harder to

analyze using our statistical assumptions on the at’s. To see this, suppose Aj
SVD
= UΣV ′, then

Lj
SVD
= (PjU)ΣV ′ is the exact SVD of Lj . Here U is an r × r orthonormal matrix. Now it is not

clear how to relate the element-wise bounded-ness assumption on at’s to an assumption on entries

of V , since now there is no easy expression for each entry of V or of the entries of Σ in terms of at

(U is an unknown matrix that can have all nonzero entries in general).

Limitations of our guarantees. s-ReProCS needs a few extra assumptions beyond slow

subspace change and what static RPCA solutions need: (i) instead of a bound on outlier fractions

per row of the entire data matrix (which is what standard RPCA methods assume), it needs such

a bound for every sub-matrix of α consecutive columns; (ii) it makes statistical assumptions on the

principal subspace coefficients at (with mutual independence being the strongest requirement); (iii)

it needs to lower bound xmin; and (iv) it uses ε̃ to denote both the initial subspace error as well as

the final recovery error achieved after a subspace update is complete. Here (i) is needed because

ReProCS is an online algorithm that uses α frames at a time to update the subspace, and one

needs to show that each update step provides an improved estimate compared to the previous one.

However, since α is large enough, requiring a bound max-outlier-frac-rowα is not too much stronger

than requiring the same bound on the outlier fractions per row of the entire n×d matrix Y . In fact,

if we compare the various RPCA solutions with storage complexity fixed at O(nα) = O(nr log n),

i.e., if we implement the various static RPCA solutions for every new batch of α frames of data,

32

then, the static RPCA solutions will also need to bound max-outlier-frac-rowα defined in (2.8).

As discussed earlier, these will require a much tighter bound of c/r though. (iv) is assumed for

simplicity. What we can actually prove is something slightly stronger: if the initial error is ε̃, and

if ε = cε̃ for a constant c which may be less than one, then, without any changes, we can guarantee

the final subspace error to be below such an ε. More generally, as long as the initial error ε̃ ≤ ∆, it

is possible to achieve final error ε for any ε > 0 if we assume that t1− ttrain > Kα, assume a slightly

larger lower bound on xmin, and if we modify our initialization procedure to use the approach of

follow-up work [17].

Limitations (ii) and (iii) are artifacts of our proof techniques. The mutual independence can be

replaced by an autoregressive model on the at’s by borrowing similar ideas from [34]. The mutual

independence and zero mean assumption on the at’s is valid for the video analytics’ application

if we let `t be the mean-subtracted background image at time t. Then, `t models independent

zero-mean background image variations about a fixed mean image, e.g., variations due to lighting

variations or due to moving curtains; see Fig. 2.3. This type of mean subtraction (with an estimate

of the mean background image computed from training data) is commonly done in practice in

many practical applications where PCA is used; it is also done in our video experiments shown

later. (iii) is needed because our proof first tries to show exact outlier support recovery by solving a

CS problem to recover the outliers from the projected measurements, followed by thresholding. It

should be possible to relax this by relaxing the exact support recovery requirement which, in turn,

will require other significant changes. For example, it may be possible to do this if one is able to do

a deterministic analysis. It may be possible to also completely eliminate it if we replace the CS step

by thresholding with carefully decreasing thresholds in each iteration (borrow the idea of AltProj);

however, we may then require the same tight bound on max-outlier-frac-row that AltProj needs.

By borrowing the stagewise idea of AltProj, it may also be possible to remove all dependence on

f .

33

2.3 Discussion of Related Work

Limitations of earlier ReProCS-based guarantees [22, 16, 34]. In [22], we introduced

the ReProCS idea and proved a partial guarantee for it. We call it a partial guarantee because it

needed to assume something about the intermediate subspace estimates returned by the algorithm.

However, this work is important because it developed a nice framework for proving guarantees for

dynamic RPCA solutions. Both our later complete guarantees [16, 34] as well as the current result

build on this framework.

The current work is a significant improvement over the complete guarantees obtained in [16, 34]

for two other ReProCS-based algorithms for three reasons. (i) The earlier works needed very specific

assumptions on how the outlier support could change (needed an outlier support model inspired

by video moving objects). Our result removes such a requirement and instead only needs a bound

on the fraction of outliers per column of the data matrix and on the fraction per row of an α-

consecutive-column sub-matrix of the data matrix (for α large enough). (ii) The subspace change

model assumed in these earlier papers can be interpreted as the current model (given in Sec. 2.2)

with θj = 90◦ or equivalently with ∆ = 1. This is an unrealistic model for slow subspace change,

e.g., in 3D, it implies that the subspace changes from the x-y plane to the y-z plane. Instead, our

current model allows changes from x-y plane to a slightly tilted x-y plane as shown in Fig. 2.1.

This modification is more realistic and it allows us to replace the upper bound on λch required

by the earlier results by a similar bound on λch∆2 (see assumption 1b of Theorem 2.2). Since ∆

quantifies rate of subspace change, this new requirement is much weaker. It can be satisfied by

assuming that ∆ is small, without making any assumption on λch. (iii) The required minimum

delay between subspace change times in the earlier results depended on 1/ε2 where ε is the desired

final subspace error after a subspace update is complete. This is a strong requirement. Our current

result removes this unnecessarily strong dependence. The delay now only depends on (− log ε)

which makes it much smaller. It also implies that the memory complexity of simple-ReProCS is

near-optimal. (iv) Unlike [16, 34], we analyze a simple ReProCS-based algorithm that ensures that

the estimated subspace dimension is bounded by (r+ 1), without needing the complicated cluster-

34

SVD algorithm. This is why our guarantee allows outlier fractions per column to be below c/r.

The work of [16] needed this to be below c/rL while [34] needed an extra assumption (clustered

eigenvalues). For long data sequences, c/r can be much larger than c/rL. We provide a detailed

comparison of these assumptions in Table 2.2.

Complete guarantees for other dynamic RPCA or RPCA solutions. Another ap-

proach that solves dynamic RPCA, but in a piecewise batch fashion, is modified-PCP (mod-PCP)

[35]. The guarantee for mod-PCP was proved using ideas borrowed from [5] for PCP. Thus, like [5],

it also needs uniformly randomly generated support sets which is an unrealistic requirement. For

the video application, this requires that foreground objects are single pixel wide and move around

the entire image completely randomly over time. This is highly impractical. In Table 2.1, we pro-

vide a comparison of our current guarantees for simple-ReProCS and its offline version with those

for original-ReProCS [22, 16, 34], modified-PCP [35], as well as with those for solutions for standard

RPCA - [5] (referred to as PCP(C)), [14] (PCP(H), this strictly improves upon [6]), AltProj [20],

RPCA via gradient descent (GD) [33] and nearly-optimal robust matrix completion (NO-RMC)

[7]. The table also contains a speed and memory complexity comparison. Offline s-ReProCS can

be interpreted as a solution for standard RPCA. From Table 2.1, it is clear that for data that

satisfies slow subspace change and the assumption that outlier magnitudes are either large or very

small, and that is such that its first ttrain frames, Y[1,ttrain], satisfy AltProj (or PCP) assumptions,

s-ReProCS and offline s-ReProCS have the following advantages over other methods.

1. For the data matrix after ttrain, i.e., for Y[ttrain+1,d], ReProCS needs the weakest bound on

max-outlier-frac-rowα without requiring uniformly randomly generated outlier support sets.

This is comparable to the bound needed by PCP(C) or mod-PCP but both assume uniform

random outlier supports which is a very strong requirement.

2. The memory complexity of s-ReProCS is significantly better than that of all other published

methods for RPCA that provably work, and is nearly optimal.

35

3. Both in terms of time complexity order (Table 2.1) and experimentally (see Sec. 2.6), s-

ReProCS and its offline counterpart are among the fastest, while having the best, or nearly

the best, performance experimentally as well. Order-wise, only NO-RMC [7] is faster than

s-ReProCS. However, NO-RMC needs the data matrix to be nearly square, i.e., it needs

c1n ≥ d ≥ c2n. This is a very strong requirement that often does not hold: for the video

application it requires that the number of video frames d be roughly as large as n (number

of pixels in one image frame). The reason is that NO-RMC deliberately under-samples the

data matrix Y by randomly throwing away some of its entries and using only the rest even

when all are available. In other words, it always solves the robust matrix completion (RPCA

with missing entries) problem and this is what results in a significant speed-up, but this is

also why it needs d ≈ n.

4. s-ReProCS can automatically detect subspace change and then also track it with a short

delay, while the other approaches (except original-ReProCS) cannot. Notice that s-ReProCS

also needs a weaker upper bound of c/r on max-outlier-frac-col while the batch techniques

(PCP, AltProj, GD, NO-RMC) applied to the entire matrix L need this to be below c/rL. Of

course, if the batch techniques are applied on pieces of data Yj := Y[tj ,tj+1), they also need

the same looser bound of c/r on max-outlier-frac-col and their memory complexity improves

too. However, the batch methods do not have a way to estimate the change times tj , while

s-ReProCS does. Moreover, since the other methods (except modified-PCP) do not have a

way to use the previous subspace information, if the pieces chosen are are too small, e.g., if

the methods are applied on α-frames at a time, their performance is much worse then when

the entire dataset is used jointly.

Comparison with follow-up work on ReProCS-NORST [17]. As compared to

ReProCS-NORST, which is the algorithm studied in our follow-up work [17] (which allows all r di-

rections of the subspace to change at each tj), simple-ReProCS has three advantages: (i) it is faster,

(ii) it needs a weaker lower bound on xmin (its required lower bound essentially does not depend

on r if ε̃ is very small), and (iii) if it is used to solve the standard RPCA problem (estimate span of

36

Algorithm 4 The actual simple-ReProCS algorithm, this is the one that is studied in our guarantees and
also implemented in our experiments. Let L̂t;α := [ˆ̀t−α+1, ˆ̀

t−α+2, . . . , ˆ̀
t].

1: Input: P̂0, yt, Output: x̂t, ˆ̀
t, P̂(t)

2: Parameters: ωsupp, K, α, ξ, r, ωevals
3: Let L̂t;α := [ˆ̀t−α+1, ˆ̀

t−α+2, . . . , ˆ̀
t].

4: P̂(ttrain) ← P̂0; j ← 1, k ← 1

5: for t > ttrain do

6: (x̂t, T̂t) ← ProjCS(P̂(t−1),yt) . Algorithm 2

7: ˆ̀
t ← yt − x̂t.

8: (P̂(t), P̂j , t̂j , k, j, phase) ← AutoSubUpd(L̂t;α, P̂j−1, t, t̂j−1, j, k, phase, P̂(t−1)) .

Algorithm 5

9: end for

10: Offline ReProCS: At t = t̂j +Kα, for all t ∈ [t̂j−1 +Kα, t̂j +Kα− 1],

11: P̂ offline
(t) ← [P̂j−1, P̂j,rot,K];

12: x̂offline
t ← IT̂t(ΨT̂t

′ΨT̂t)
−1ΨT̂t

′yt where Ψ := I − P̂j−1P̂j−1
′ − P̂j,rot,KP̂j,rot,K

′;

13: ˆ̀offline
t ← yt − x̂offline

t .

columns of the entire matrix L), we can eliminate the r-SVD based subspace re-estimation (deletion)

step. With this change, (a) the required upper bound on max-outlier-frac-rowα for s-ReProCS does

not depend on the condition number f (just max-outlier-frac-rowα ≤ 0.01 suffices), and (b) its time

complexity improves by a factor of r (if the initialization step is ignored) compared to ReProCS-

NORST. Of course it will mean s-ReProCS-no-delete will need max-outlier-frac-col < c/(r + J)

which is slightly stronger.

Since ReProCS-NORST allows all r directions of the subspace to change, it also has many

advantages over s-ReProCS: its subspace tracking delay is near-optimal, and it allows for a weaker

initialization assumption.

2.4 Why s-ReProCS works: main ideas of our proof

In this section we explain the main ideas of our proof, first for the tj known case, and then

explain why the subspace change detection step works.

37

Algorithm 5 Automatic Subspace Update

function AutoSubUpd(L̂t;α, P̂j−1, t, t̂j−1, j, k, phase, P̂(t−1))

t̂j−1,fin ← t̂j−1 +Kα+ α− 1

if phase = detect and t = t̂j−1,fin + uα then

B ← (I − P̂j−1P̂j−1
′)L̂t,α

if σmax(B) ≥ √αωevals then

phase← update, t̂j ← t,

end if

P̂(t) ← P̂(t−1)

end if

if phase = update then

(P̂(t), P̂j , k) ← SubUp(L̂t;α, P̂j−1, t, t̂j−1, j, k, phase, P̂(t−1)) . Algorithm 3

end if

if k = K + 1 then

phase← detect

end if

return P̂(t), P̂j , t̂j , j, k, phase

end function

2.4.1 Why s-ReProCS with tj known works

To understand things simply, first assume that t̂j = tj , i.e., the subspace change times are

known. Consider Algorithm 1. At each time t this consists of three steps - projected Compressive

Sensing (CS) to estimate xt, estimating `t by subtraction, and subspace update. Consider projected

CS. This is analyzed in Lemma 2.15. At time t, suppose that we have access to P̂(t−1) which is

a good estimate of the previous subspace, span(P(t−1)). Because of slow subspace change, this is

also a good estimate of span(P(t)). Its first step projects yt orthogonal to P̂(t−1) to get ỹt. Recall

that ỹt = Ψxt + bt where bt := Ψ(`t + vt) is small. Using the incoherence (denseness) assumption

and span(P(t−1)) being a good estimate of span(P(t)), it can be argued that the restricted isometry

constant (RIC) [4] of Ψ := I − P̂(t−1)P̂(t−1)
′ will be small. Using [4, Theorem 1.2], this, along with

‖bt‖ being small, ensures that l1 minimization will produce an accurate estimate, x̂t,cs, of xt. The

support estimation step with a carefully chosen threshold, ωsupp = xmin/2, and a lower bound on

xmin then ensures exact support recovery, i.e., T̂t = Tt. With this, the LS step output, x̂t, satisfies

38

x̂t = xt + et with

et := ITt(ΨTt
′ΨTt)

−1ΨTt
′(`t + vt)

= ITt(ΨTt
′ΨTt)

−1ITt
′Ψ(`t + vt) (2.10)

and with ‖et‖ being small. Computing ˆ̀
t := yt − x̂t, then also gives a good estimate of `t that

satisfies ˆ̀
t = `t + vt − et with et as above.

The subspace update step uses ˆ̀
t’s to update the subspace. Since et satisfies (2.10), et depends

on `t; thus the error/noise, vt − et, in the “observed data” ˆ̀
t used for the subspace update step

depends on the true data `t. Because of this, the subspace update does not involve a PCA or

an incremental PCA problem in the traditionally studied setting (data and corrupting noise/error

being independent or uncorrelated). It is, in fact, an instance of PCA when the noise/error, vt−et,

in the observed data ˆ̀
t depends on the true data `t. This problem was studied in [26, 27] where it

was referred to as “correlated-PCA” or “PCA in data-dependent noise”. Using this terminology,

our subspace update problem (estimating Pj using P̂j−1) is a problem of PCA in data-dependent

noise with partial subspace knowledge. To simplify our analysis, we first study this more general

problem and obtain a guarantee for it in Theorem 2.7 in Sec. 2.5.1. This theorem along with

Lemma 2.15 (that analyzes the projected-CS step discussed above) help obtain a guarantee for the

k-th projection-SVD step in Lemma 2.16. The k = 1 and k > 1 cases are handled separately. The

main assumption required for applying Theorem 2.7 holds because et is sparse with support Tt that

changes enough (max-outlier-frac-rowα bound of Theorem 2.2 holds). The subspace deletion via

simple SVD step of subspace update is studied in Lemma 2.17. This step solves a problem of PCA

in data-dependent noise and so it directly uses the results from [27].

To understand the flow of the proof, consider the interval [tj , tj+1). Assume that, before tj , the

previous subspace has been estimated with error ε̃, i.e., we have P̂j−1 with SE(P̂j−1,Pj−1) ≤ ε̃.

We explain below that this implies that, under the theorem’s assumptions, we get SE(P̂j ,Pj) ≤ ε̃

before tj+1. We remove the subscripts j in some of this discussion. Define the interval Jk :=

[tj + (k − 1)α, tj + kα). Suppose also that vt = 0.

39

1. Before the first projection-SVD step (which is done at t = tj + α), i.e., for t ∈ J1, we have

no estimate of Pnew, and hence only a crude estimate of Prot. In particular, we can only get

the bound SE(P̂(t),Prot) = SE(P̂j−1,Prot) ≤ ε̃+ | sin θ| for this interval.

• As a result, the bound on the “noise”, bt, seen by the projected-CS step is also the largest

for this interval, we have ‖bt‖ ≤ C(ε̃
√
rλ+ + | sin θ|

√
λch). Using the CS guarantee,

followed by ensuring exact support recovery (as explained above), this implies that et

satisfies (2.10) and that we get a similar bound on the final CS step error: ‖et‖ ≤

C(ε̃
√
rλ+ + 0.11| sin θ|

√
λch). The factor of 0.11 in the second term of this bound is

obtained because, for this interval, Ψ = I − P̂j−1P̂j−1
′ and so ΨPnew ≈ Pnew and Pnew

is dense, see (2.13). Thus one can show that ‖ITt ′ΨPnew‖2 ≤ 0.11.

• This bound on et, along with using the critical fact that et satisfies (2.10) (is sparse)

and its support Tt changes enough (the max-outlier-frac-rowα bound of Theorem 2.2

holds), ensures that we get a better estimate of Prot after the first projection-SVD step.

This is what allows us to apply Theorem 2.7. Using it we can show that SE(P̂(t),Prot) =

SE([P̂j−1, P̂j,rot,1],Prot) ≤ 0.1ε̃+0.06| sin θ| for t ∈ J2. See proof of k = 1 case of Lemma

2.16 and Fact 2.14.

2. Thus we have a much better estimate of Prot for t ∈ J2 than for J1. Because of this, ‖bt‖

is smaller, and hence ‖et‖ is smaller for t ∈ J2. This, along with the sparsity and changing

support, Tt, of et, ensures an even better estimate at the second projection-SVD step. We

can show that SE(P̂(t),Prot) = SE([P̂j−1, P̂j,rot,2],Prot) ≤ 0.1ε̃ + 0.5 · 0.06| sin θ| for t ∈ J3.

See proof of k > 1 case of Lemma 2.16 and Fact 2.14.

3. Proceeding this way, we show that SE(P̂(t),Prot) = SE([P̂j−1, P̂j,rot,k],Prot) ≤ 0.1ε̃ +

0.5k−2(0.06| sin θ|) after the k-th projection-SVD step. Picking K appropriately, gives

SE(P̂(t),Prot) ≤ ε̃ after K steps, i.e., at t = tj + Kα. In all the above intervals,

SE(P̂(t),P(t)) ≤ ε̃+ SE(P̂(t),Prot). Thus at t = tj +Kα, SE(P̂(t),P(t)) ≤ 2ε̃.

40

4. At t = tj + Kα, P̂(t) contains (r + 1) columns. The subspace re-estimation via simple SVD

step re-estimates Pj in order to delete the deleted direction, Pdel, from P̂(t). The output of

this step is P̂j (the final estimate of span(Pj)). Thus, at t = tj+Kα+α, P̂(t) = P̂j and we can

show that it satisfies SE(P̂(t),P(t)) = SE(P̂j ,Pj) ≤ ε̃. See Lemma 2.17. The re-estimation is

done at this point because, for times t in this interval, ‖ ˆ̀
t − `t‖ = ‖et‖ ≤ 2.4ε̃‖`t‖. For PCA

in data-dependent noise, simple SVD needs α ≥ (q/ε)2f2(r log n) where q is the error/noise

to signal ratio and ε is the final desired error level. For our problem, the “noise” is et and

thus q = 2.4ε̃ and ε = ε̃. Since q/ε is a constant, α ≥ α∗ = Cf2r log n suffices when simple

SVD is applied at this time.

When vt 6= 0, almost all of the above discussion remains the same. The reason is this: in the main

theorem, we assume ‖vt‖2 ≤ 0.1rε̃2λ+ with c < 1 and so even though we have to deal with vt

in bt and et expressions, and in the α expression, the changes required are only to the numerical

constants. In Corollary 2.3, we have carefully chosen the bound on ‖vt‖ to equal the bound on ‖et‖

modulo constants. Thus, once again, only numerical constants change, everything else remains the

same.

2.4.2 Why automatic subspace change detection and Automatic Simple-ReProCS

works

The subspace change detection approach is summarized in Algorithm 4. This idea is motivated

by a similar idea first used in our earlier works [16, 34]. The algorithm toggles between the “detect”

phase and the “update” phase. It starts in the “detect” phase. If the j-th subspace change is

detected at time t, we set t̂j = t. At this time, the algorithm enters the “update” (subspace

update) phase. We then repeat the K projection-SVD steps and the one subspace re-estimation

via simple SVD step from Algorithm 1 with the following change: the k-th projection-SVD step

is now done at t = t̂j + kα − 1 (instead of at t = tj + kα − 1) and the subspace re-estimation

is done at t = t̂j + Kα + α − 1 := t̂j,fin. Thus, at t = t̂j,fin, the subspace update is complete.

At this time, the algorithm enters the “detect” phase again. To understand the change detection

41

strategy, consider the j-th subspace change. Assume that the previous subspace Pj−1 has been

accurately estimated by t = t̂j−1,fin and that t̂j−1,fin < tj . Let P̂∗ := P̂j−1 denote this estimate.

At this time, the algorithm enters the “detect” phase in order to detect the next (j-th) change. Let

Bt := (I − P̂∗P̂∗
′)[ˆ̀t−α+1, . . . , ˆ̀

t]. For every t = t̂j−1,fin + uα, u = 1, 2, . . . , we detect change by

checking if the maximum singular value of Bt is above a pre-set threshold,
√
ωevalsα, or not.

We claim that, whp, under Theorem 2.2 assumptions, this strategy has no false detects and

correctly detects change within a delay of at most 2α frames. The former is true because, for

any t for which [t − α + 1, t] ⊆ [t̂j−1,fin, tj), all singular values of the matrix Bt will be close to

zero (will be of order
√
ε̃) and hence its maximum singular value will be below

√
ωevalsα. Thus,

whp, t̂j ≥ tj . To understand why the change is correctly detected within 2α frames, first consider

t = t̂j−1,fin +
⌈
tj−t̂j−1,fin

α

⌉
α := tj,∗. Since we assumed that t̂j−1,fin < tj (the previous subspace

update is complete before the next change), tj lie in the interval [tj,∗ − α+ 1, tj,∗]. Thus, not all of

the `t’s in this interval will be generated from span(Pj). Thus, depending on where in the interval

tj lies, the algorithm may or may not detect the change at this time. However, in the next interval,

i.e., for t ∈ [tj,∗ + 1, tj,∗ + α], all of the `t’s will be generated from span(Pj). We can prove that,

whp, Bt for this time t will have maximum singular value that is above the threshold. Thus, if the

change is not detected at tj,∗, whp, it will get detected at tj,∗ + α. Hence one can show that, whp,

either t̂j = tj,∗, or t̂j = tj,∗ + α, i.e., tj ≤ t̂j ≤ tj + 2α. To see the actual proof of these claims,

please refer to Appendix 2.9 where we prove our main result without assuming tj known.

2.5 Proving Theorem 2.2 with assuming t̂j = tj

In Table 2.4, we summarize all the new symbols and terms used in our proof. This, along with

Table 2.3 given earlier, should help follow the proof details without having to refer back to earlier

sections. To give a simpler proof first, we prove Theorem 2.2 under the assumption that t̂j = tj

below. The proof without this assumption is given in Appendix 2.9. With assuming t̂j = tj , we

are studying Algorithm 1. Recall from Sec. 2.4 that the subspace update step involves solving a

42

Table 2.3: List of Symbols and Assumptions used in the Main Result 2.2, and Corollary 2.3. (Note:
We show that whp, t̂j ≥ tj and t̂j + (K + 1)α ≤ tj+1 and hence, whp, J0,JK+2 are non-empty
intervals.

Observations: yt = `t + xt + vt, where, `t = P(t)at =
[
Pj−1,fix Pj,rot

]at,fix

at,ch

 for t ∈ [tj, tj+1), Tt is support of xt.

Subspace Change Principal Subspace Coefficients, at’s

P(t) = P(tj) = Pj for all t ∈ [tj , tj+1), j = 0, 1, . . . , J element-wise bounded, zero mean,

Pch ≡ Pj−1,ch Changing direction from span(Pj−1) at tj mutually independent with identical covariance (See Sec. 2.2.2)

Pfix ≡ Pj−1,fix Fixed directions from span(Pj−1) at tj E[atat
′] := Λ =

Λfix 0

0 λch


Pnew ≡ Pj−1,new New direction from span(Pj−1,⊥) added at tj λ+ λmax(Λ)

Prot ≡ Pj−1,rot Rotated version of Pch λ− λmin(Λ)

SE(Pj−1,Pj) = SE(Pj−1,ch,Pj,rot) ≤ ∆ f := λ+/λ− Condition Number of Λ

Pj,new :=
(I−Pj−1,chPj−1,ch

′)Pj,rot

SE(Pj−1,ch,Pj,rot)

See (2.5) for equivalent generative model.

maxj maxi ‖ basis([Pj−1,Pj])
i‖ ≤

√
µ(r+1)
n which implies (2.13) holds.

Outliers Intervals for j-th subspace change and tracking

xmin,t := mini∈Tt |(xt)i| Min. outlier magnitude at t J0 := [tj , t̂j) interval before change detected

xmin := mint xmin,t Min. outlier magnitude Jk := [t̂j + (k − 1)α, t̂j + kα) k-th subspace update interval

s := max-outlier-frac-col · n Cardinality of support set of xt JK+1 := [t̂j +Kα, t̂j + (K + 1)α) SVD-re-estimation interval

max-outlier-frac-rowα ≤ ρrow See (2.8) JK+2 := [t̂j + (K + 1)α, tj+1) Final interval

ρrow = 0.01/f2

max-outlier-frac-col ≤ ρcol = 0.01
2µ(r+1) See Theorem 2.2

problem of PCA in data-dependent noise when partial subspace knowledge is available. We provide

a guarantee for this problem in Sec. 2.5.1 and use it in our proof in Sec. 2.5.4.

For the entire proof we will use the equivalent subspace change model described in (2.5). Clearly

| sin θj | ≤ ∆ by our assumption.

2.5.1 PCA in data-dependent noise with partial subspace knowledge

The Problem. We are given a set of α frames of observed data yt := `t + wt + zt, with

‖zt‖2 ≤ b2z and ‖E[ztzt
′]‖ ≤ λ+

z := c1b
2
z/r ; wt = Mt`t, `t = Pat and with P satisfying

P = [Pfix,Prot], where Prot := (Pch cos θ + Pnew sin θ),

43

Table 2.4: List of symbols and their associated meaning for understanding the proof of Theorems
2.2 and 2.7. The complete definitions can be found in Definitions 2.12 and 2.20. We also provide
the location of the proof for each of events/scalars where applicable in parenthesis.

Symbol Meaning

Preliminaries (Stated in Definitions 2.12 and 2.20)

θ := θj Angle of j-th subspace change

P∗ := Pj−1, Pnew := Pj,new, Pch := Pj−1,ch, Pfix := Pj−1,fix Parts of the j-th subspace

Prot := Pj,rot := (Pch cos θ + Pnew sin θ), P := Pj
P̂∗ := P̂j−1, P̂ := P̂j Estimates of j-th subspace

P̂rot,k := P̂j,rot,k k-th estimate of Prot.

et := ITt(ΨTt
′ΨTt)

−1ITt
′Ψ(`t + vt) (Proved in Lemma 2.15) Expression for error, et = x̂t − xt = `t − ˆ̀+ vt

Scalars (Derived in Fact 2.14)

ζ+
0 := ε̃+ | sin θ| Bound on SE(P̂ ,P∗), i.e., before subspace update

ζ+
1 := 0.4 · 1.2((0.1 + ε̃)| sin θ|+ ε̃) + 0.11ε̃ Bound on SE([P̂∗, P̂rot,1],Prot), i.e., after 1st subspace update

ζ+
k := 0.4 · (1.2ζ+

k−1) + 0.11ε̃ Bound on SE([P̂∗, P̂rot,k],Prot), i.e., after k-th subspace update

Events – tj known (Proved in Sec. 2.5.4)

Γ0 := {SE(P̂∗,P∗) ≤ ε̃} Previous subspace, P∗ is ε̃-accurately estimated

Γk := Γk−1 ∩ {SE([P̂∗, P̂rot,k],Prot) ≤ ζ+
k } All k subspace update steps work

ΓK+1 := ΓK ∩ {SE(P̂ ,P) ≤ ε̃} Current subspace, P is ε̃-accurately estimated

Events – tj unknown (This section is only used in Appendix 2.9)

t̂j−1,fin := t̂j−1 + (K + 1)α− 1 Time at which deletion step is complete

tj,∗ = t̂j−1,fin +
⌈
tj−t̂j−1,fin

α

⌉
α First possible time instant at which subspace change can be detected

Det0 := {t̂j = tj,∗} (Proved in Appendix 2.9) Subspace Change detected within α-frames

Det1 := {t̂j = tj,∗ + α} (Proved in Appendix 2.9) Subspace Change detected after α, but before 2α frames

ProjSVDk := {SE([P̂∗, P̂rot,k]) ≤ ζ+
rot,k} (Proved in Lemma 2.16) k-th Proj SVD works

ProjSVD := ∩Kk=1ProjSVDk All K Proj SVD steps work

Del := {SE(P̂ ,P) ≤ ε̃} (Proved in Lemma 2.17) Deletion Step works

NoFalseDets (Proved in Appendix 2.9) No false detection of subspace change

Γ0,end := {SE(P̂∗,P∗) ≤ ε̃} (Proved in Claim 2.13) Previous subspace estimated within ε̃-accuracy

Γj,end (Proved in Claim 2.13) All previous j subspaces estimated within ε̃-accuracy

Notation for PCA in data-dependent noise: Theorem 2.7 (Proved in Appendix 2.10)

yt = `t + wt + zt Observations: True data - `t = Pat = [Pfix,Prot]at;

Data-dep noise - wt; Modeling error - zt
wt = Mt`t = M2,tM1,t`t Data-dependent noise,

‖M1,tP∗‖ ≤ q0 and ‖M1,tProt‖ ≤ qrot Assumptions on Data-dependency matrices

‖M2,t‖ ≤ 1 and
∥∥ 1
α

∑
tM2,tM2,t

′∥∥ ≤ b0 = 0.01

‖zt‖ ≤ bz := q0

√
rλ+ + qrot

√
λch, ‖E[ztzt‖ ≤ λ+

z := b2z/r Assumptions on modeling error.

44

Pfix = (P∗U0)I[1,r−1], Pch = (P∗U0)Ir, and U0 is an r × r rotation matrix. Also, the at’s are zero

mean, mutually independent, element-wise bounded r.v.’s with identical and diagonal covariance

Λ, and independent of the matrices Mt. The matrices Mt are unknown.

Let J α denote the α-frame time interval for which the yt’s are available. We also have access

to a partial subspace estimate P̂∗ that satisfies SE(P̂∗,P∗) ≤ ε̃, and that is computed using data

that is independent of the `t’s (and hence of the yt’s) for t ∈ J α. The goal is to estimate span(P)

using P̂∗ and the yt’s for t ∈ J α.

Projection-SVD / Projection-EVD. Let Φ := I − P̂∗P̂∗
′. A natural way to estimate P is

to first compute P̂rot as the top eigenvector of

Dobs :=
1

α

∑
t∈J α

Φytyt
′Φ.

and set P̂ = [P̂∗, P̂rot]. We refer to this strategy as “projection-EVD” or “projection-SVD”. In

this paper, we are restricting ourselves to only one changed direction and hence we compute only

the top eigenvector (or left singular vector) of Dobs. In general if there were rch > 1 directions, we

would compute all eigenvectors with eigenvalues above a threshold, see [22, 34].

The Guarantee. We can prove the following about projection-SVD.

Theorem 2.7. Consider the above setting for an α ≥ α0 where

α0 := Cηmax(f(r log n), ηf2(r + log n)).

Assume that the Mt’s can be decomposed as Mt = M2,tM1,t where M2,t is such that ‖M2,t‖ ≤ 1

but ∥∥∥∥∥ 1

α

∑
t∈J α

M2,tM2,t
′

∥∥∥∥∥ ≤ b0 = 0.01. (2.11)

Let q0 denote a bound on maxt ‖M1,tP∗‖ and let qrot denote a bound on maxt ‖M1,tProt‖, i.e., we

have ‖M1,tP∗‖ ≤ q0 and ‖M1,tProt‖ ≤ qrot for all t ∈ J α. Assume that

q0 ≤ 2ε̃, qrot ≤ 0.2| sin θ|, ε̃f ≤ 0.01| sin θ|, and

bz ≤ C(q0

√
rλ+ + qrot

√
λch) (2.12)

Define the event E∗ := {SE(P̂∗,P∗) ≤ ε̃}. The following hold.

45

1. Conditioned on E∗, w.p. at least 1− 12n−12,

SE(P̂ ,P) ≤ ε̃+ SE(P̂ ,Prot) and

SE(P̂ ,Prot) ≤ (ε̃+ | sin θ|)0.39qrot + 0.1ε̃

| sin θ|

≤ 1.01| sin θ|0.39qrot + 0.1ε̃

| sin θ|

< 0.4qrot + 0.11ε̃.

2. Conditioned on E∗, w.p. at least 1− 12n−12,

λmax(Dobs)

≥ (0.97 sin2 θ − 0.4qrot| sin θ| − 0.15ε̃| sin θ|)λch.

For large n, r, r log n > r + log n. Thus the following simpler expression for α0 suffices: α ≥ α0 =

Cη2f2(r log n).

Remark 2.8. Theorem 2.7 holds even when E∗ is replaced by E0 := E∗ ∩ Ẽ(Z) where Ẽ(Z) is an

event that depends on a r.v. Z that is such that the pair {P̂∗, Z} is still independent of the `t’s

(and hence of the yt’s) for t ∈ J α.

Proof. The proof follows using a careful application of the Davis-Kahan sin θ theorem [9] followed

by using matrix Bernstein [24] to bound the numerator terms in the sin θ theorem bound and

Vershynin’s sub-Gaussian result [29] to bound the extra terms in its denominator. While the

overall approach is similar to that used by [27] for the basic correlated-PCA problem, this proof

requires significantly more work. We give the proof in Appendix 2.10. The most important idea

in the proof is the use of Cauchy-Schwarz to show that the time-averaged projected-data - noise

correlation and time-averaged noise power are both
√
b0 times their instantaneous values. We

explain this next.

In the result above, the bounds assumed in (2.12) are not critical. They only help to get a

simple expression for the subspace error bound. As will be evident from the proof, we can also get

46

a (more complicated) guarantee without assuming (2.12), and with any value of ρrow. The main

assumption needed by Theorem 2.7 is (2.11) on the data-dependency matrices Mt. This is required

because the noise wt depends on the true data `t and hence the instantaneous values of both the

noise power and of the signal-noise correlation (even after being projected orthogonal to P̂∗) can

be large if λch is large. However, (2.11) helps ensure that the time-averaged noise power and the

time-averaged projected-signal-noise correlation are much smaller. Using the definitions of q0 and

qrot, ‖E[wtwt
′]‖ ≤ q2

0λ
+ + q2

rotλch := cw and ‖E[Φ`twt
′]‖ ≤ ε̃q0λ

+ + (ε̃+ | sin θ|)qrotλch := cwl. By

appropriately applying Cauchy-Schwarz (Theorem 2.26),∥∥∥∥∥ 1

α

∑
t∈J α

E[wtwt
′]

∥∥∥∥∥ ≤√b0cw and

∥∥∥∥∥ 1

α

∑
t∈J α

E[Φ`twt
′Φ]

∥∥∥∥∥ ≤√b0cwl.
Since b0 = 0.01, both bounds are 0.1 times their instantaneous values. See proof of Lemma 2.24

for their derivation.

For our problem, (2.11) holds because we can let M2,t = ITt and M1,t as the rest of the matrix

multiplying `t in (2.10). Then, using the bound on outlier fractions per row from Theorem 2.2, it

is not hard to see that
∥∥ 1
α

∑
tM2,tM2,t

′∥∥ ≤ ρrow. We state this formally next in Lemma 2.9.

Lemma 2.9. Assume that the max-outlier-frac-rowα bound of Theorem 2.2 holds. Then, for any

α-length interval J α ⊆ [t1, d],∥∥∥∥∥ 1

α

∑
t∈J α

ITtITt
′

∥∥∥∥∥ = γ(J α) ≤ max-outlier-frac-rowα

≤ ρrow = 0.01/f2 ≤ 0.01 = b0.

Proof of Lemma 2.9. The proof is straightforward. Let Ct := ITtITt
′. Then,

Ct = diag ((ct)1, (ct)2, · · · , (ct)n) ,

where

(ct)i =


1, if i ∈ Tt,

0, if i /∈ Tt
= 1{i∈Tt}.

47

Since each Ct is diagonal, so is 1
α

∑
t∈J α Ct. The latter has diagonal entries given by(

1

α

∑
t

Ct

)
i,i

=
1

α

∑
t∈J α

(ct)i =
1

α

∑
t∈J α

1{i∈Tt}

Thus, ∥∥∥∥∥ 1

α

∑
t

Ct

∥∥∥∥∥ = max
i=1,2,...,n

∣∣∣∣∣∣
(

1

α

∑
t

Ct

)
i,i

∣∣∣∣∣∣
= max

i=1,2,...,n

1

α

∑
t∈J α

1{i∈Tt} = γ(J α)

where γ(J α) defined in (2.7) is the outlier fraction per row of XJ α . From Theorem 2.2, this is

bounded by ρrow.

2.5.2 Two simple lemmas from [22]

The following two lemmas taken from [22] will be used in proving the main lemmas that together

imply Theorem 2.2 with t̂j = tj .

Lemma 2.10. [22, Lemma 2.10] Suppose that P , P̂ and Q are three basis matrices. Also, P and

P̂ are of the same size, Q′P = 0 and ‖(I − P̂ P̂ ′)P ‖ = ζ∗. Then,

1. ‖(I − P̂ P̂ ′)PP ′‖ = ‖(I − PP ′)P̂ P̂ ′‖ = ‖(I − PP ′)P̂ ‖ = ‖(I − P̂ P̂ ′)P ‖ = ζ∗

2. ‖PP ′ − P̂ P̂ ′‖ ≤ 2‖(I − P̂ P̂ ′)P ‖ = 2ζ∗

3. ‖P̂ ′Q‖ ≤ ζ∗

4.
√

1− ζ2
∗ ≤ σi

(
(I − P̂ P̂ ′)Q

)
≤ 1

Lemma 2.11. [22, Lemma 3.7] For an n× r basis matrix P ,

1. max|T |≤s ‖IT ′P ‖2 ≤ smaxi=1,2,...,r ‖Ii′P ‖2

2. δs(I − PP ′) = max|T |≤s ‖IT ′P ‖2

3. If P = [P1,P2] then ‖IT ′P ‖2 ≤ ‖IT ′P1‖2 + ‖IT ′P2‖2. Also, ‖IT ′P1‖2 ≤ ‖IT ′P ‖2.

48

Recall that δs(M) is the s-restricted isometry constant [4] of a matrix M , i.e., it is the smallest

real number for which the following holds for all s-sparse vectors z: (1 − δs)‖z‖2 ≤ ‖Mz‖2 ≤

(1 + δs)‖z‖2.

2.5.3 Definitions and main claim needed for Theorem 2.2 and Corollary 2.3 with

t̂j = tj

Definition 2.12. We will use the following definitions in our proof.

1. Let θ := θj, P∗ := Pj−1, Pnew := Pj,new, Pch := Pj−1,ch, Prot := Pj,rot := (Pch cos θ +

Pnew sin θ), P := Pj. Similarly define P̂∗ := P̂j−1, P̂ := P̂j, and

let P̂rot,k := P̂j,rot,k denote the k-th estimate of Prot with P̂rot,0 = [.].

2. The scalars

ζ+
0 := ε̃+ | sin θ|,

ζ+
1 := 0.4 · 1.2((0.1 + ε̃)| sin θ|+ ε̃) + 0.11ε̃ and

ζ+
k := 0.4 · (1.2ζ+

k−1) + 0.11ε̃ for k = 2, 3, . . . ,K.

We will show that these are high probability bounds on SE([P̂∗, P̂rot,k],Prot).

3. The events

Γ0 := {SE(P̂∗,P∗) ≤ ε̃}: clearly Γ0 implies that SE(P̂∗,Prot) ≤ ζ+
0 := ε̃+ | sin θ|,

Γk := Γk−1 ∩ {SE([P̂∗, P̂rot,k],Prot) ≤ ζ+
k } for k = 1, 2, . . . ,K, and

ΓK+1 := ΓK ∩ {SE(P̂ ,P) ≤ ε̃}.

4. The time intervals:

Jk := [tj + (k − 1)α, tj + kα) for k = 1, 2, . . . ,K: the projection-SVD intervals,

JK+1 := [tj +Kα, tj + (K + 1)α): the subspace re-estimation interval,

JK+2 := [tj + Kα + α, tj+1): the interval when the current subspace update is complete and

before the next change.

We first prove the SE bounds of Theorem 2.2. With these, the other bounds follow easily. To

obtain the SE bounds, we will be done if we prove the following claim.

49

Claim 2.13. Given SE(P̂∗,P∗) ≤ ε̃, w.p. at least 1− (K + 1)12n−12,

1. SE(P̂∗,Prot) ≤ ζ+
0 , SE([P̂∗, P̂rot,1],Prot) ≤ ζ+

1 ,

2. for k > 1, SE([P̂∗, P̂rot,k],Prot) ≤ ζ+
k ,

3. and so SE([P̂∗, P̂rot,K],Prot) ≤ ζ+
K ≤ ε̃ (using definition of K) and SE([P̂∗, P̂rot,K],P) ≤ 2ε̃.

4. Further, after the deletion step, SE(P̂ ,P) ≤ ε̃.

Proving the above claim is equivalent to showing that Pr(ΓK+1|Γ0) ≥ 1− (K + 1)12n−12.

This claim is an easy consequence of the three main lemmas and Fact 2.14 given below. Fact 2.14

provides simple upper bounds on ζ+
k that will be used at various places. The first lemma, Lemma

2.15, shows that, assuming that the “subspace estimates so far are good enough”, the projected

CS step “works” for the next α frames, i.e., for all t ∈ Jk, T̂t = Tt; et is sparse and supported on

Tt and satisfies (2.10), and ‖et‖ is bounded. The second lemma, Lemma 2.16, uses Lemma 2.15

and Theorem 2.7 to show that, assuming that the “subspace estimates so far are good enough”,

with high probability (whp), the subspace estimate at the next projection-SVD step is even better

than the previous ones. Applying Lemma 2.16 for each k = 1, 2, . . . ,K proves the first two parts

of Claim 2.13. The third part follows easily from the first two and the definition of K. The fourth

part follows using Lemma 2.17, which shows that, assuming that the K-th projection-SVD step

produces a subspace estimate that is within 2ε̃ of the true subspace, the subspace re-estimation

step returns an estimate that is within ε̃ of the true subspace.

Fact 2.14. Using ε̃ ≤ ε̃f ≤ 0.01| sin θ|,

1. ζ+
0 := ε̃+ | sin θ| ≤ 1.01| sin θ|,

2. ζ+
1 := 0.4 · 1.2((0.1 + ε̃)| sin θ|+ ε̃) + 0.11ε̃ ≤ 0.06| sin θ|,

3. ζ+
k := 0.4 · 1.2ζ+

k−1 + 0.11ε̃ ≤ 0.5k−1ζ+
1 + 0.11

1−0.5 ε̃ ≤ 0.5k−1(0.06| sin θ|) + 0.11ε̃ ≤ 0.03| sin θ|

This claim essentially implies Theorem 2.2 and Corollary 2.3 with t̂j = tj . We prove these

without this assumption in Appendix 2.9.

50

2.5.4 The three main lemmas needed to prove the main claim and their proofs

Lemma 2.15 (Projected CS). Recall from Sec. 2.5 that s is an upper bound on |Tt|. Under

assumptions of Theorem 2.2 or or Corollary 2.3, the following hold for k = 1, 2, . . . ,K + 2. Let

Ψ1 := I−P̂∗P̂∗′, Ψk := I−P̂∗P̂∗′−P̂rot,k−1P̂rot,k−1
′ for k = 2, 3, . . . ,K+1, and ΨK+2 := I−P̂ P̂ ′.

From Algorithm 1,

Ψ = Ψk for t ∈ Jk, k = 1, 2, . . . ,K + 2.

Assume that Γk−1 holds. Then,

1. max|T |≤2s ‖IT ′P̂∗‖ ≤ 0.3 + ε̃ ≤ 0.31.

2. max|T |≤2s ‖IT ′P̂rot,k−1‖ ≤ 0.1 + ε̃+
ζ+
k−1+ε̃

| sin θ| ≤ 0.1 + 0.01 + 0.04 < 0.15.

3. δ2s(Ψ1) ≤ 0.312 < 0.12, δ2s(Ψk) ≤ 0.312 + 0.152 < 0.12 for k = 2, 3, . . . ,K + 2,

4. for all t ∈ Jk, ‖(ΨTt ′ΨTt)−1‖ ≤ 1.2

5. for all t ∈ Jk, T̂t = Tt

6. for all t ∈ Jk, et := x̂t − xt = `t − ˆ̀
t + vt satisfies (2.10) with Ψ = Ψk for t ∈ Jk

7. for t ∈ J1, ‖et‖ ≤ 2.4
√
η(ε̃
√
rλ+ + 0.11∆

√
λch);

for t ∈ Jk, ‖et‖ ≤ 2.4
√
η(ε̃
√
rλ+ + ζ+

k−1

√
λch) for k = 2, 3, . . .K;

for t ∈ JK+1, ‖et‖ ≤ 4.8
√
ηε̃
√
rλ+.

for t ∈ JK+2, ‖et‖ ≤ 2.4
√
ηε̃
√
rλ+.

Proof. Since the noise bound of Theorem 2.2 is much smaller or equal to those assumed by Corollary

2.3, if we can prove the latter, we would have also proved the former. Using the first claim of Lemma

2.11, the max-outlier-frac-col bound of Theorem 2.2 and the incoherence assumption (2.6) imply

that, for any set T with |T | ≤ 2s,

‖IT ′P∗‖ ≤ 0.1 < 0.3 and ‖IT ′Pnew‖ ≤ 0.1 (2.13)

51

(In order to simplify our assumptions, we have simplified the incoherence/denseness assumption

from what it was in the original version of this work; as a result, even the first term above is

bounded by 0.1 (not 0.3 as before). To not have to change the rest of the proof given below, we

still use the 0.3 bound in the writing below). Using (2.13), for any set T with |T | ≤ 2s,

‖IT ′P̂∗‖ ≤ ‖IT ′(I − P∗P∗
′)P̂∗‖+ ‖IT ′P∗P∗′P̂∗‖

≤ ‖(I − P∗P∗
′)P̂∗‖+ ‖IT ′P∗‖

= ‖(I − P̂∗P̂∗
′)P∗‖+ 0.3

≤ ε̃+ 0.3 ≤ 0.31. (2.14)

The second row used (2.13) and the following: since P̂∗ and P∗ have the same dimension,

SE(P∗, P̂∗) = SE(P̂∗,P∗) (follows by Lemma 2.10, item 1). The third row follows using the defini-

tion of event Γk−1. Proceeding similarly for P̂rot,k−1 and Pnew (both have the same dimension),

‖IT ′P̂rot,k−1‖ ≤ ‖(I − PnewPnew
′)P̂rot,k−1‖+ ‖IT ′Pnew‖

= ‖(I − P̂rot,k−1P̂rot,k−1
′)Pnew‖+ 0.1

≤ ‖(I − P̂∗P̂∗
′ − P̂rot,k−1P̂rot,k−1

′)Pnew‖

+ ‖P̂∗′Pnew‖+ 0.1

≤
ζ+
k−1 + ε̃

| sin θ|
+ ε̃+ 0.1 ≤ 0.04 + 0.01 + 0.1

≤ 0.15.

The second row used item 1 of Lemma 2.10 and (2.13). The third row used triangle inequality. The

last row follows using Pnew = Prot−Pch cos θ
sin θ and the definition of event Γk−1. Using this, triangle

inequality and | cos θ| ≤ 1, we bound the first term. Using item 3 of Lemma 2.10, we bound the

second term. The final bounds use Fact 2.14.

To get the above bound, we use Pnew (and not Prot) because ‖P̂∗′Pnew‖ ≤ ε̃ since P∗ is

orthogonal to Pnew. But we do not have a small upper bound on ‖P̂∗′Prot‖.

52

The third claim follows using the first two claims and Lemma 2.11. The fourth claim follows

from the third claim as follows:

∥∥∥(ΨTt ′ΨTt)−1
∥∥∥ ≤ 1

1− δs(Ψ)
≤ 1

1− δ2s(Ψ)

≤ 1

1− 0.12
< 1.2.

The last three claims follow the approach of the proof of [22, Lemma 6.4]. There are minor

differences because we set ξ a little differently now and because we assume vt 6= 0. We provide the

proof in Appendix 2.13.

Lemma 2.16 (Projection-SVD). Under the assumptions of Theorem 2.2 or Corollary 2.3,

the following holds for k = 1, 2, . . .K. Conditioned on Γk−1, w.p. at least 1 − 12n−12,

SE([P̂∗, P̂rot,k],Prot) ≤ ζ+
k , i.e., Γk holds.

Proof. Since the noise bound of Theorem 2.2 is much smaller or equal to those assumed by Corollary

2.3, if we can prove the latter, we would have also proved the former.

Assume that Γk−1 holds. The proof first uses Lemma 2.15 to get an expression for et = `t− ˆ̀
t+vt

and then applies Theorem 2.7 with the modification given in Remark 2.8. Using Lemma 2.15, for

all t ∈ Jk,

ˆ̀
t = `t − et + vt = `t − ITt(ΨTt

′ΨTt)
−1ITt

′Ψ(`t + vt) + vt

:= `t − el,t − ev,t + vt

where Ψ = I − P̂∗P̂∗
′ − P̂rot,k−1P̂rot,k−1

′ with P̂rot,0 = [.].

In the k-th projection-SVD step, we use these ˆ̀
t’s and P̂∗ to get a new estimate of Prot

using projection-SVD. To bound SE([P̂∗, P̂rot,k],Prot), we apply Theorem 2.7 (Remark 2.8)11 with

E0 ≡ Γk−1, yt ≡ ˆ̀
t, wt ≡ −el,t, zt ≡ −ev,t + vt, α ≥ α0 ≡ α∗, and J α ≡ Jk. We can let

M2,t = −ITt which implies b0 ≡ max-outlier-frac-rowα and M1,t = (ΨTt
′ΨTt)

−1ITt
′Ψ. Using

the max-outlier-frac-rowα bound of Theorem 2.2 and Lemma 2.9, the main assumption needed by

11We use Remark 2.8 with E∗ ≡ Γ0, Z ≡ { ˆ̀
1, ˆ̀

2, . . . , ˆ̀
tj+(k−1)α−1}, and Ẽ(Z) = Γk−1 \ Γ0.

53

Theorem 2.7, (2.11), holds. With P = Pj satisfying (2.5), and α∗ defined in (2.9), all the key

assumptions of Theorem 2.7 hold. The simpler expression of α∗ suffices because we treat η as a

numerical constant and so f2(r log n) > f2(r + log n) for large n, r.

We now just need to compute q0 and qrot for each k, ensure that they satisfy (2.12), and apply

the result. The computation for k = 1 is different from the rest. When k = 1, Ψ = I − P̂∗P̂∗
′.

Thus, using item 4 of Lemma 2.15 and the definition of event Γk−1, ‖M1,tP∗‖ ≤ 1.2ε̃ = q0, q0 < 2ε̃,

and

‖M1,tProt‖≤ 1.2(‖ITt ′(I − P̂∗P̂∗
′)Pnew‖| sin θ|+ ε̃)

≤ 1.2(‖ITt ′Pnew‖+ ‖P̂∗′Pnew‖)| sin θ|+ 1.2ε̃

≤ 1.2((0.1 + ε̃)| sin θ|+ ε̃) = qrot.

The third row follows using (2.13) and ‖P̂∗′Pnew‖ ≤ ε̃ (folows by item 3 of Lemma 2.10). Using

ε̃ ≤ ε̃f ≤ 0.01| sin θ|, clearly qrot < 0.2| sin θ|. Finally, in this interval, the bound on bz is satisfied

since bz = bv,t and the expression for bv,t in J1 is equal to the required upper bound on bz. Applying

Theorem 2.7, SE([P̂∗, P̂rot,1],Prot) ≤ 0.4qrot + 0.11ε̃ = 0.4 · 1.2((0.1 + ε̃)| sin θ|+ ε̃) + 0.11ε̃ = ζ+
1 .

Consider k > 1. Now Ψ = I − P̂∗P̂∗
′ − P̂rot,k−1P̂rot,k−1

′. With this, we still have ‖M1,tP∗‖ ≤

1.2ε̃ = q0 and q0 < 2ε̃. But, to bound ‖M1,tProt‖ we cannot use the approach that worked for

k = 1. The reason is that ‖[P̂∗, P̂rot,k−1]′Pnew‖ is not small. However, instead, we can now use

the fact that [P̂∗, P̂rot,k−1] is a good estimate of Prot, with SE([P̂∗, P̂rot,k−1],Prot) ≤ ζ+
k−1 (from

definition of event Γk−1). Thus,

‖M1,tProt‖ ≤ 1.2SE([P̂∗, P̂rot,k−1],Prot) (2.15)

≤ 1.2ζ+
k−1 = qrot.

By Fact 2.14, qrot < 0.2| sin θ|. Even in this interval, the required bound on bz holds. Thus, applying

Theorem 2.7, SE([P̂∗, P̂rot,k],Prot) ≤ 0.4qrot + 0.11ε̃ = 0.4 · 1.2ζ+
k−1 + 0.11ε̃ = ζ+

k .

54

Lemma 2.17 (Simple SVD based subspace re-estimation). Under the assumptions of Theorem 2.2

or Corollary 2.3, the following holds. Conditioned on ΓK , w.p. at least 1− 12n−12, SE(P̂ ,P) ≤ ε̃,

i.e., ΓK+1 holds.

Proof. Assume that ΓK holds. Using Lemma 2.15, for all t ∈ JK+1,

ˆ̀
t = `t − et + vt = `t − ITt(ΨTt

′ΨTt)
−1ITt

′Ψ(`t + vt) + vt

:= `t − el,t − ev,t + vt

where Ψ = I− P̂∗P̂∗
′− P̂rot,KP̂rot,K

′. Re-estimating the entire subspace using simple SVD applied

to these ˆ̀
t’s is an instance of correlated-PCA with yt ≡ ˆ̀

t, wt ≡ −el,t and zt ≡ −ev,t + vt. We

can apply the following result for correlated-PCA [27, Theorem 2.13] to bound SE(P̂ ,P). Recall

P̂ contains the top r eigenvectors of
∑

t∈JK+1
ˆ̀
t
ˆ̀′
t. The following is a simplified version of [27,

Theorem 2.13]. It follows by upper bounding λz,P ,P⊥ and λ+
z,rest by λ+

z and lower bound λ−z,P by

zero in [27, Theorem 2.13].

Theorem 2.18. For t ∈ J α, we are given data vectors yt := `t+wt+zt where wt = Mt`t, `t = Pat

and zt is small unstructured noise. Let P̂ be the matrix of top r eigenvectors of 1
α

∑
t∈J α ytyt

′.

Assume that Mt can be decomposed as Mt = M2,tM1,t so that ‖M2,t‖ ≤ 1 but
∥∥ 1
α

∑
tM2,tM2,t

′∥∥ ≤
b for a b < 1. Let q be an upper bound on maxt∈J α ‖M1,tP ‖. We assume that ‖zt‖ ≤ bz and define

‖E[ztzt
′]‖ ≤ λ+

z := b2z/r. For an εSE > 0, define

α0 := Cηmax

(
f2(r log n)

q2

ε2
SE

,

λ+
z q

2

λ−ε2
SE

fr(log n), ηf2(r log 9 + 10 log n)

)
.

If α ≥ α0, and 3
√
bqf + λ+

z
λ− ≤ 0.46εSE, then, w.p. at least 1− 12n−12, SE(P̂ ,P) ≤ εSE. .

Apply the above result with yt ≡ ˆ̀
t, wt ≡ −el,t, zt ≡ −ev,t+vt, α ≥ α∗, and J α ≡ JK+1. From

the expression for et, we can let M2,t ≡ −ITt , M1,t ≡ (ΨTt
′ΨTt)

−1ITt
′Ψ. Next we compute q. Since

ΓK holds, SE([P̂∗, P̂rot,K],P) ≤ ε̃+ζ+
K ≤ 2ε̃. Thus, ‖M1,tP ‖ ≤ 1.2SE([P̂∗, P̂rot,K],P) ≤ 1.2·2ε̃ = q.

The final desired error is εSE = ε̃. Using Lemma 2.9 and the max-outlier-frac-rowα bound from

55

Theorem 2.2, the bound on the time-average of M2,tM2,t
′ holds with b ≡ ρrow = 0.01

f2 < 0.52

(3·2.4f)2 .

Also, in this interval b2z = Crλ+ and so λz = Cλ+ and thus the second term in the α0 expression

equals the first term. The third term can of course be ignored in the large n, r regime. Applying

the above result with εSE = ε̃, and q = 2.4ε̃, we conclude the following: for α ≥ α∗, w.p. at least

1−12n−12, SE(P̂ ,P) ≤ ε̃. The simpler expression of α∗ suffices because η is treated as a numerical

constant and so f2(r log n) > f2(r + log n) for large n, r. Also under the assumption of Corollary

2.3, the second term is dominated by the first term.

Proof of Claim 2.13. Lemma 2.16 tells us that Pr(Γk|Γk−1) ≥ 1 − 12n−12. Lemma 2.17

tells us that Pr(ΓK+1|ΓK) ≥ 1 − 12n−12. Thus, Pr(ΓK+1|Γ0) = Pr(ΓK+1,ΓK , . . .Γ1|Γ0) =

Pr(Γ1|Γ0) Pr(Γ2|Γ1) . . .Pr(ΓK+1|ΓK) ≥ (1−12n−12)K(1−12n−12). since ΓK+1 ⊆ ΓK ⊆ ΓK−1 · · · ⊆

Γ0. The result follows since (1− 12n−12)K(1− 12n−12) ≥ 1− (K + 1)12n−12.

Proof of Theorem 2.2 with t̂j = tj. Define the events Γ1,0 := {SE(P̂0,P0) ≤ ε̃}, Γj,k := Γj,k−1 ∩

{SE([P̂j−1, P̂j,rot,k]) ≤ ζ+
k }, for k = 1, 2, . . . ,K, Γj,K+1 := Γj,K ∩ {SE(P̂j ,Pj) ≤ ε̃} and

Γj+1,0 := Γj,K+1. We can state and prove Lemmas 2.16 and 2.17 with Γk replaced by Γj,k.

Then Claim 2.13 implies that Pr(Γj,K+1|Γj,0) ≥ 1 − 12n−12. Using ΓJ,K+1 ⊆ ΓJ−1,K+1 · · · ⊆

Γ1,K+1 ⊆ Γ1,0 and Γj+1,0 := Γj,K+1, Pr(ΓJ,K+1|Γ1,0) = Pr(ΓJ,K+1,ΓJ−1,K+1, . . .Γ1,K+1|Γ1,0) =

Pr(Γ1,K+1|Γ1,0) Pr(Γ2,K+1|Γ2,0) . . .Pr(ΓJ,K+1|ΓJ,0) ≥ (1−(K+1)12n−12)J ≥ 1−J(K+1)12n−12 ≥

1− dn−12.

Event ΓJ,K+1 implies that Γj,k holds for all j and for all k. Thus, all the SE bounds given in

Theorem 2.2 hold. Using Lemma 2.15, T̂t = Tt for all the time intervals of interest, and the bounds

on ‖et‖ hold.

2.6 Empirical Evaluation

In this section we illustrate the superiority of s-ReProCS over existing state of the art meth-

ods on synthetic and real data. In particular, we consider the task of background subtraction.

All time comparisons are performed on a Desktop Computer with Intel
R©

Xeon E3-1240 8-core

56

CPU @ 3.50GHz and 32GB RAM. And all experiments with synthetic data are averaged over 100

independent trials. All codes are available at https://github.com/praneethmurthy/ReProCS.

Similar experiments have been shown in the earlier ReProCS works (original-ReProCS) [22, 11,

16, 34]. The purpose of this section is to illustrate that, even though s-ReProCS is much simpler,

is provably faster and memory efficient, and provably works under much simpler assumptions, its

experimental performance is still similar to that of original-ReProCS. It outperforms existing works

for the same classes of videos and simulated data for which original-reprocs outperforms them.

2.6.1 Synthetic Data

Our first simulation experiment is done to illustrate the advantage of s-ReProCS over existing

batch and online RPCA techniques. As explained earlier, because s-ReProCS exploits dynamics

(slow subspace change), it is provably able to tolerate a much larger fraction of outliers per row than

all the existing techniques without needing uniformly randomly generated support sets. When the

number of subspace changes, J , is large, it also tolerates a significantly larger fraction of outliers

per column. The latter is hard to demonstrate via simulations (making J large will require a very

long sequence). Thus we demonstrate only the former. Our second experiment shows results with

using an i.i.d. Bernoulli model on support change (which is the model assumed in the other works).

One practical instance where outlier fractions per row can be larger than those per column

is in the case of video moving objects that are either occasionally static or slow moving [16, 34].

The outlier support model for our first and second experiments is inspired by this example and

the model used in [16, 34]. It models a 1D video consisting of a person/object of length s pacing

up and down in a room with frequent stops. The object is static for β frames at a time and then

moves down. It keeps moving down for a period of τ frames, after which it turns back up and does

the same thing in the other direction. We let β = dc0τe for a c0 < 1. With this model, for any

interval of the form [(k1 − 1)τ + 1, k2τ] for k1, k2 integers, the outlier fraction per row is bounded

by c0. For any general interval of length α ≥ τ , this max-outlier-frac-rowα is still bounded by 2c0

while max-outlier-frac-col is bounded by s/n.

https://github.com/praneethmurthy/ReProCS

57

Model 2.19. Let β = dc0τe. Assume that the Tt satisfies the following. For the first τ frames

(downward motion),

Tt =



[1, s], t ∈ [1, β]

[s+ 1, 2s], t ∈ [β + 1, 2β]

...

[(1/c0 − 1)s+ 1, s/c0], t ∈ [τ − β + 1, τ]

for the next τ frames (upward motion), Tt =

[(1/c0 − 1)s+ 1, s/c0], t ∈ [τ + 1, τ + β]

[(1/c0 − 2)s+ 1, (1/c0 − 1)s], t ∈ [τ + β + 1, τ + 2β]

...

[1, s], t ∈ [2τ − β + 1, 2τ].

Starting at t = 2τ + 1, the above pattern is repeated every 2τ frames until the end, t = d.

This model is motivated by the model assumed for the guarantees in older works [16, 34]. The

above model is one practically motivated way to simulate data that is not not generated uniformly

at random (or as i.i.d. Bernoulli, which is approximately the same as the uniform model for large

n). It also provides a way to generate data with a different bounds on outlier fractions per row

and per column. The maximum outlier fraction per column is s/n. For any time interval of length

α ≥ τ , the outlier fraction per row is bounded by 2c0. Thus, for Theorem 2.2, with this model,

ρrow = 2c0/f
2. By picking 2c0 larger than s/n we can ensure larger outlier fractions per row than

per column.

We compare Algorithm 4 and its offline counterpart with three of the batch methods with prov-

ably guarantees discussed in Sec. 2.2.3 - PCP [5], AltProj [20] and RPCA-GD [33] - and with two

recently proposed online algorithms known to have good experimental performance and for which

code was available - ORPCA [10] and GRASTA [12]. The code for all these techniques are cloned

from the Low-Rank and Sparse library (https://github.com/andrewssobral/lrslibrary).

https://github.com/andrewssobral/lrslibrary

58

10−7

10−2

103

(a) SE(P̂(t), P(t))

GRASTA ORPCA s-ReProCS NORST

Offline-NORST Alt Proj RPCA-GD

(b) ‖
ˆ̀
t−`t‖22
‖`t‖22

2,000 4,000 6,000 8,000

10−11

10−5

101

t

(c)

0 2,000 4,000 6,000

t

(d)

Figure 2.2: First row ((a), (b)): Illustrate the subspace error and the normalized `t error for
n = 5000 and outlier supports generated using Model 2.19. Both the metrics are plotted every
kα − 1 time-frames. The results are averaged over 100 iterations. Second row ((c), (d)) illustrate
the subspace error and the normalized `t error for n = 500 and Bernoulli outlier support model.
They are plotted every kα − 1 time-frames. The plots clearly corroborates the nearly-exponential
decay of the subspace error as well as the error in `t.

For generating data we used d = 8000, ttrain = 500, J = 2, r = 5, f = 16 with t1 = 1000,

θ1 = 30◦, t2 = 4300, θ2 = 1.01θ1 and varying n. The at’s are zero mean i.i.d uniform random

variables generated exactly as described before and so is P(t). We generated a basis matrix Q by

ortho-normalizing the first r+2 columns of a n×n i.i.d. standard Gaussian matrix. For t ∈ [1, t1),

we set P(t) = P0 with P0 being the first r columns of Q. We let P1,new be (r+1)-th column of Q, and

rotated it in using (2.5) with U1 = I and with angle θ1 to get P1. We set P(t) = P1 for t ∈ [t1, t2).

We set P2,new to be the last column of Q, U2 = I, and rotate using angle θ2 just as done in the

first subspace change and finally for t ∈ [t2, d] we set P(t) = P2. At all times t, we let `t = P(t)at

59

Table 2.5: Average subspace error SE(P̂(t), P(t)) and time comparison for different values of signal
size n. The values in brackets denote average time taken per frame (– indicates that the algorithm
does not work).

ReProCS GRASTA ORPCA Offline ReProCS PCP AltProj RPCA-GD

n = 500 (in 10−4s) 0.066 (3.1) 0.996 (2.8) 0.320 (10) 8.25× 10−5 (6.3) 1.00 (51) 0.176 (104) 0.215 (454)

n = 500, Bern. (in 10−4s) 0.044 (4.8) 0.747 (1.9) 0.078 (1.8) 3.9× 10−7 (9.2) 1.2× 10−4 (395) 0.0001 (32) 0.303 (329)

n = 5000 (in 10−2s) 0.048 (3.7) 0.999 (0.11) 0.322 (0.30) 6.05× 10−5 (8.5) 0.999 (8.9) 0.354 (13.0) 0.223 (47.0)

n = 10, 000 (in 10−2s) 0.090 (15.6) 0.999 (0.25) 0.3235 (0.68) 0.0006 (36.8) – – –

with at being zero mean, i.i.d uniform random variables such that (at)i ∼ unif
(
−
√
f,
√
f
)

for

i = 1, · · · , r−2 and (at)[r−1,r] ∼ unif(−1, 1). With this the condition number is f , the covariance

matrix, Λ = diag(f, f, · · · , f, 1, 1)/3, λ+ = f/3, λch = λ− = 1/3, and η = 3. We generate Tt

using Model 2.19 as follows. For t ∈ [ttrain, d], we used s = 0.1n, c0 = 0.2 and τ = 100. Thus

ρrow = 0.4/f2. For t ∈ [1, ttrain], we used s = 0.05n and c0 = 0.02. This was done to ensure that

AltProj (or any other batch technique works well for this period and provides a good initialization).

The magnitudes of the nonzero entries of xt (outliers) were generated s i.i.d uniform r.v.’s between

xmin = 10 and xmax = 25.

We implemented Algorithm 4 for s-ReProCS (with initialization using AltProj) with α =

Cf2r log n = 500, K = d−0.8 log(0.9ε̃)e = 5, ωsupp = xmin/2, and ωevals = 0.0025λ−. We ini-

tialized using AltProj applied to Y[1,ttrain]. For the batch methods used in the comparisons – PCP,

AltProj and RPCA-GD, we implement the algorithms on Y[1,t] every t = ttrain + kα − 1 frames.

Further, we set the regularization parameter for PCP λ = 1/
√
n in accordance with [5]. The other

known parameters, r for Alt-Proj, outlier-fraction for RPCA-GD, are set using the true values. For

online methods we implement the algorithms without modifications. The regularization parameter

for ORPCA was set as with λ1 = 1/
√
n and λ2 = 1/

√
d according to [10]. We plot the subspace

error and the normalized error of `t over time in Fig. 2.2(a) and 2.2(b) for n = 5000. We dis-

play the time-averaged error for other values of n in Table 2.5. This table also contains the time

comparisons.

As can be seen, s-ReProCS outperforms all the other methods and offline s-ReProCS signifi-

cantly outperforms all the other methods for this experiment. The reason is that the outlier fraction

per row are quite large, but s-ReProCS exploits slow subspace change. In principle, even GRASTA

60

exploits slow subspace change, however, it uses approximate methods for computing the SVD and

does not use projection-SVD and hence it fails. s-ReProCS and offline s-ReProCS are faster than

all the batch methods especially for large n. In fact when n = 10000, the batch methods are out

of memory and cannot work, while s-ReProCS still can. But s-ReProCS is slower than GRASTA

and ORPCA.

Comparison with other algorithms - random outlier support using the i.i.d. Bernoulli model.

We generated data exactly as described above with the following change: Tt was now generated

as i.i.d. Bernoulli with probability of any index i being in ∪t∈[1,n]Tt being ρs = 0.02 for the

first ttrain frames and ρs = 0.2 for the subsequent data. Notice that under the Bernoulli model,

ρrow = ρcol = ρs. We used n = 500. We show the results in Fig. 2.2(c) and 2.2(d). For this

experiment, the batch methods PCP and AltProj have good performance, that is better than

s-ReProCS at most time instants. Offline s-ReProCS still outperforms all the other methods.

2.6.2 Real Data: Background Subtraction

In this section we provide simulation results for on real videos on three benchmark datasets. For

all the sequences, to implement s-ReProCS, we obtained an estimate using the AltProj algorithm.

For the initialization we set r = 40 and the other parameters for the proposed algorithm, were set

as follows. We used α = 60, K = 3, ξt = ‖Ψ ˆ̀
t−1‖2 and ωevals = 0.0011λ−. We found that these

parameters work for most videos that we verified our algorithm on. For a more detailed empirical

evaluation on real world data-sets, please see [25]. The other state-of-the-art algorithms were

implemented using the default setting. In algorithms where we are required to provide an esimate

of the rank, we used r = 40 consistently. Additionally, for RPCA-GD we set the corruption fraction,

α = 0.2 as described in the paper. We must also mention that the performance of s-ReProCS w.r.t.

original-ReProCS is very similar, but is provably fast, and needs fewer assumptions. Again, a more

detailed comparison is presented in [25].

Meeting Room (MR) dataset: The meeting room sequence is a set of 1964 images of resolution

64 × 80. The first 1755 frames consists of outlier-free data and so we only consider the last 1209

61

frames. Here and below, we use the first 400 “noisy” frames as the training data and the algorithm

parameters are set as mentioned before. This is a challenging video sequence because the color

of the person and the color of the curtain are hard to distinguish. s-ReProCS algorithm is able

to perform the separation at around 43 frames per second. The recovered background images are

shown in the first two rows of Fig. 2.3.

Switch Light (SL) dataset: This dataset contains 2100 images of resolution 120× 160. The

first 770 frames are outlier free. This is a challenging sequence because there are drastic changes in

the subspace as indicated in the last two rows of Fig. 2.3. This causes all the batch techniques to

fail. For this sequence, s-ReProCS achieves a “test” processing rate of 16 frames-per-second. The

recovered background images are shown in the middle two rows of Fig. 2.3.

Lobby (LB) dataset: This dataset contains 1555 images of resolution 128 × 160. The first

341 frames are outlier free. This is a challenging sequence, as the background changes often due to

illumination changes, and there are multiple objects in the foreground to detect and subtract. For

this sequence, s-ReProCS achieves a “test” processing rate of 12 frames-per-second. The images

are shown in the last two rows of Fig. 2.3.

2.7 Conclusions and Future Work

We obtained the first complete guarantee for any online, streaming or dynamic RPCA algorithm

that holds under weakened versions of standard RPCA assumptions, slow subspace change, and

outlier magnitudes are either large or very small. Our guarantee implies that, by exploiting these

extra assumptions, one can significantly weaken the required bound on outlier fractions per row.

This has many important practical implications especially for video analytics. We analyzed a simple

algorithm based on the Recursive Projected Compressive Sensing (ReProCS) framework introduced

in [22]. The algorithm itself is simpler than other previously studied ReProCS-based methods, it

is provably faster, and has near-optimal memory complexity. Moreover, our guarantee removes all

the strong assumptions made by the previous two guarantees for ReProCS-based methods.

62

As described earlier, our current result still has limitations, some of which can be removed with

a little more work. For example, it assumes a very simple model on subspace change in which

only one direction can change at any given change time. Of course the changing direction could be

different at different change times, and hence over a long period, the entire subspace could change.

In follow-up work [17], we have studied another algorithm that removes this limitation. Another

issue that we would like to study is whether the lower bound on outlier magnitudes can be relaxed

further if we use the stronger assumption on outlier fractions per row (assume they are of order

1/r). It may be possible to do this by borrowing the AltProj [20] proof idea.

A question of practical and theoretical interest is to develop a streaming version of simple-

ReProCS for dynamic RPCA. A preprint that studies a streaming algorithm for standard RPCA

but only for the restrictive rL = r = 1 setting is [21]. By streaming we mean that the algorithm

makes only one pass through the data and needs storage of order exactly nr. Simple-ReProCS

needs only a little more storage than this, however, it makes multiple passes through the data

in the SVD steps. Algorithmically, streaming ReProCS is easy to develop: one can replace the

projection SVD and SVD steps in the subspace update by their streaming versions, e.g., block

stochastic power method. However, in order to prove that this still works (with maybe an extra

factor of log n in the delay), one would need to analyze the block stochastic power method for the

problems of PCA in data-dependent noise, and for its extension that assumes availability of partial

subspace knowledge. Finally, as explained in [16], any guarantee for dynamic RPCA also provides

a guarantee for dynamic Matrix Completion (MC) as an almost direct corollary. The reason is that

MC can be interpreted as RPCA with outlier supports Tt being known.

2.8 References

[1] Adali, T., and Haykin, S., Eds. Adaptive Signal Processing: Next Generation Solutions.
Wiley & Sons, 2010.

[2] Balzano, L., Recht, B., and Nowak, R. Online Identification and Tracking of Subspaces
from Highly Incomplete Information. In Allerton Conf. Comm., Control, Comput. (2010).

63

[3] Balzano, L., and Wright, S. Local convergence of an algorithm for subspace identification
from partial data. Found. Comput. Math. 15, 5 (2015).

[4] Candes, E. The restricted isometry property and its implications for compressed sensing. C.
R. Math. Acad. Sci. Paris Serie I (2008).

[5] Candès, E. J., Li, X., Ma, Y., and Wright, J. Robust principal component analysis? J.
ACM 58, 3 (2011).

[6] Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., and Willsky, A. S. Rank-sparsity
incoherence for matrix decomposition. SIAM Journal on Optimization 21 (2011).

[7] Cherapanamjeri, Y., Gupta, K., and Jain, P. Nearly-optimal robust matrix completion.
ICML (2016).

[8] Chi, Y., Eldar, Y. C., and Calderbank, R. Petrels: Parallel subspace estimation and
tracking by recursive least squares from partial observations. IEEE Transactions on Signal
Processing (December 2013).

[9] Davis, C., and Kahan, W. M. The rotation of eigenvectors by a perturbation. iii. SIAM
J. Numer. Anal. 7 (Mar. 1970), 1–46.

[10] Feng, J., Xu, H., and Yan, S. Online robust pca via stochastic optimization. In NIPS
(2013).

[11] Guo, H., Qiu, C., and Vaswani, N. An online algorithm for separating sparse and low-
dimensional signal sequences from their sum. IEEE Trans. Sig. Proc. 62, 16 (2014), 4284–4297.

[12] He, J., Balzano, L., and Szlam, A. Incremental gradient on the grassmannian for online
foreground and background separation in subsampled video. In IEEE Conf. on Comp. Vis.
Pat. Rec. (CVPR) (2012).

[13] Horn, R., and Johnson, C. Matrix Analysis. Cambridge Univ. Press, 1985.

[14] Hsu, D., Kakade, S. M., and Zhang, T. Robust matrix decomposition with sparse cor-
ruptions. IEEE Trans. Info. Th. (Nov. 2011).

[15] Li, Y., Xu, L., Morphett, J., and Jacobs, R. An integrated algorithm of incremental
and robust pca. In IEEE Intl. Conf. Image Proc. (ICIP) (2003), pp. 245–248.

[16] Lois, B., and Vaswani, N. Online matrix completion and online robust pca. In IEEE Intl.
Symp. Info. Th. (ISIT) (2015).

[17] Narayanamurthy, P., and Vaswani, N. Nearly optimal robust subspace tracking.
arxiv:1712.06061 under review for IEEE Trans. Info Theory (2017).

64

[18] Narayanamurthy, P., and Vaswani, N. A fast and memory-efficient algorithm for ro-
bust pca (merop). In 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2018), IEEE, pp. 4684–4688.

[19] Narayanamurthy, P., and Vaswani, N. Nearly optimal robust subspace tracking. In
International Conference on Machine Learning (2018), pp. 3701–3709.

[20] Netrapalli, P., Niranjan, U. N., Sanghavi, S., Anandkumar, A., and Jain, P. Non-
convex robust pca. In NIPS (2014).

[21] Niranjan, U. N., and Shi, Y. Streaming robust pca. arxiv (2016).

[22] Qiu, C., Vaswani, N., Lois, B., and Hogben, L. Recursive robust pca or recursive sparse
recovery in large but structured noise. IEEE Trans. Info. Th. (August 2014), 5007–5039.

[23] Skocaj, D., and Leonardis, A. Weighted and robust incremental method for subspace
learning. In IEEE Intl. Conf. Comp. Vis. (ICCV) (Oct 2003), vol. 2, pp. 1494 –1501.

[24] Tropp, J. A. User-friendly tail bounds for sums of random matrices. Found. Comput. Math.
12, 4 (2012).

[25] Vaswani, N., Bouwmans, T., Javed, S., and Narayanamurthy, P. Robust subspace
learning: Robust pca, robust subspace tracking, and robust subspace recovery. IEEE signal
processing magazine 35, 4 (2018), 32–55.

[26] Vaswani, N., and Guo, H. Correlated-pca: Principal components’ analysis when data and
noise are correlated. In NIPS (2016).

[27] Vaswani, N., and Narayanamurthy, P. Finite sample guarantees for pca in non-isotropic
and data-dependent noise. In Allerton 2017, long version at arXiv:1709.06255 (2017).

[28] Vaswani, N., and Narayanamurthy, P. Static and dynamic robust pca and matrix com-
pletion: A review. Proceedings of the IEEE 106, 8 (2018), 1359–1379.

[29] Vershynin, R. Introduction to the non-asymptotic analysis of random matrices. Compressed
sensing (2012), 210–268.

[30] Xiao, L., and Zhang, T. A proximal-gradient homotopy method for the l1-regularized
least-squares problem. In ICML (2012).

[31] Yang, B. Projection approximation subspace tracking. IEEE Trans. Sig. Proc. (1995), 95–107.

[32] Yang, B. Asymptotic convergence analysis of the projection approximation subspace tracking
algorithms. Signal Processing 50 (1996), 123–136.

65

[33] Yi, X., Park, D., Chen, Y., and Caramanis, C. Fast algorithms for robust pca via
gradient descent. In NIPS (2016).

[34] Zhan, J., Lois, B., Guo, H., and Vaswani, N. Online (and Offline) Robust PCA: Novel
Algorithms and Performance Guarantees. In Intnl. Conf. Artif. Intell. Stat. (AISTATS) (2016).

[35] Zhan, J., and Vaswani, N. Robust pca with partial subspace knowledge. IEEE Trans. Sig.
Proc. (July 2015).

2.9 Appendix A: Proof of Theorem 2.2 or Corollary 2.3 without assuming tj

known

The key results needed for this and later proofs – Cauchy-Schwarz for sums of matrices, matrix

Bernstein, and Vershynin’s sub-Gaussian result – are summarized in the last appendix, Appendix

2.15. For a summary of notation used for this and later proofs, please see Table 2.4.

Here we prove Theorem 2.2 in the general case. The main idea is explained in Sec. 2.4.2. Define

t̂j−1,fin := t̂j−1 +Kα+ α− 1,

tj,∗ = t̂j−1,fin +

⌈
tj − t̂j−1,fin

α

⌉
α

Thus, t̂j−1,fin is the time at which the (j − 1)-th subspace update is complete; whp, this occurs

before tj . Under this assumption, tj,∗ is such that tj lies in the interval [tj,∗ − α + 1, tj,∗]. Recall

from the algorithm that we increment j to j+1 at t = t̂j+Kα+α := t̂j,fin. Thus, for t ∈ [tj , t̂j,fin),

Φ = I − P̂∗P̂∗
′, while for t ∈ [t̂j,fin, tj+1), Φ = I − P̂ P̂ ′.

Definition 2.20. Define the events

1. Det0 := {t̂j = tj,∗} = {λmax(1
α

∑tj,∗
t=tj,∗−α+1(I − P̂∗P̂∗

′) ˆ̀
t
ˆ̀′
t(I − P̂∗P̂∗

′)) > ωevals} and

Det1 := {t̂j = tj,∗ + α} = {λmax(1
α

∑tj,∗+α
t=tj,∗+1(I − P̂∗P̂∗

′) ˆ̀
t
ˆ̀′
t(I − P̂∗P̂∗

′)) > ωevals},

2. ProjSVD := ∩Kk=1ProjSVDk where ProjSVDk := {SE([P̂∗, P̂rot,k]) ≤ ζ+
k },

3. Del := {SE(P̂ ,P) ≤ ε̃},

4. NoFalseDets := {for all J α ⊆ [t̂j,fin, tj+1), λmax(1
α

∑
t∈J α(I− P̂ P̂ ′) ˆ̀

t
ˆ̀′
t(I− P̂ P̂ ′)) ≤ ωevals}

66

5. Γ0,end := {SE(P̂∗,P∗) ≤ ε̃},

6. Γj,end := Γj−1,end∩
(
(Det0∩ProjSVD∩Del∩NoFalseDets)∪ (Det0∩Det1∩ProjSVD∩Del∩

NoFalseDets)
)
.

Let p0 denote the probability that, conditioned on Γj−1,end, the change got detected at t = tj,∗,

i.e., let

p0 := Pr(Det0|Γj−1,end).

Thus, Pr(Det0|Γj−1,end) = 1− p0. It is not easy to bound p0. However, as we will see, this will not

be needed.

Assume that Γj−1,end ∩ Det0 holds. Consider the interval J α := [tj,∗, tj,∗ + α). This interval

starts at or after tj , so, for all t in this interval, the subspace has changed. For this interval,

Ψ = Φ = I − P̂∗P̂∗
′. Applying the last item of Theorem 2.7, w.p. at least 1− 12n−12,

λmax

(
1

α

∑
t∈J α

Φ ˆ̀
t
ˆ̀′
tΦ

)

≥ (0.97 sin2 θ − 0.4qrot| sin θ| − 0.15ε̃| sin θ|)λch

where qrot is the bound ‖(ΨT̂t
′ΨT̂t)

−1IT̂t
′ΨProt‖. Theorem 2.7 is applicable for the reasons given

in the proof of Lemma 2.16. Proceeding as in the proof of Lemma 2.16 for k = 1, we get that

qrot = 1.2((0.1 + ε̃)| sin θ| + ε̃). Thus, using the bound on ε̃, we can conclude that, w.p. at least

1− 12n−12,

λmax

(
1

α

∑
t∈J α

Φ ˆ̀
t
ˆ̀′
tΦ

)
≥ 0.91 sin2 θλch

≥ 0.9 sin2 θλ− > ωevals

and thus t̂j = tj,∗ + α. This follows since ωevals = 5ε̃2λ+ = 5ε̃2fλ− ≤ 5ε̃2f2λ− ≤

5(0.01 minj SE(Pj−1,Pj))
2λ− and sin θ = SE(Pj−1,Pj). In other words,

Pr(Det1|Γj−1,end ∩Det0) ≥ 1− 12n−12.

Conditioned on Γj−1,end ∩ Det0 ∩ Det1, the first projection-SVD step is done at t = t̂j + α =

tj,∗ + 2α and so on. We can state and prove Lemma 2.16 with Γk replaced by Γj,end ∩ Det0 ∩

67

Det1∩ProjSVD1∩ProjSVD2 . . .ProjSVDk and with the k-th projection-SVD interval being Jk :=

[t̂j + (k− 1)α, t̂j + kα). We can state and prove a similarly changed version of Lemma 2.17 for the

simple SVD based deletion step. Applying Lemma 2.16 for each k, and then apply Lemma 2.17,

Pr(ProjSVD ∩Del|Γj−1,end ∩Det0 ∩Det1) ≥ (1− 12n−12)K+1.

We can also do a similar thing for the case when the change is detected at tj,∗, i.e. when Det0 holds.

In this case, we replace Γk by Γj,end ∩ Det0 ∩ ProjSVD1 ∩ ProjSVD2 . . .ProjSVDk and conclude

that

Pr(ProjSVD ∩Del|Γj−1,end ∩Det0) ≥ (1− 12n−12)K+1.

Finally consider the NoFalseDets event. First, assume that Γj−1,end ∩ Det0 ∩ ProjSVD ∩ Del

holds. Consider any interval J α ⊆ [t̂j,fin, tj+1). In this interval, P̂(t) = P̂ , Ψ = Φ = I − P̂ P̂ ′

and SE(P̂ ,P) ≤ ε̃. Also, using Lemma 2.15, et satisfies (2.10) for t in this interval. Thus, defining

el,t = ΦITt(ΨTt
′ΨTt)

−1ITt
′Ψ`t, ev,t = ΦITt(ΨTt

′ΨTt)
−1ITt

′Ψvt and zt = ev,t + Φvt

1

α

∑
t∈J α

Φ ˆ̀
t
ˆ̀
t
′Φ =

1

α
ΦP

(∑
t∈J α

atat
′

)
P ′Φ

+
1

α

∑
t∈J α

Φ`tel,t
′ + (.)′ +

1

α

∑
t∈J α

Φ`tzt
′ + (.)′

+
1

α

∑
t∈J α

el,tel,t
′ +

1

α

∑
t∈J α

ztzt
′

We can bound the first term using Vershynin’s sub-Gaussian result (Theorem 2.28) and the other

terms using matrix Bernstein (Theorem 2.27). The approach is similar to that of the proof of

Lemma 2.24. The derivation is more straightforward in this case, since for the above interval

‖ΨP ‖ = ‖ΦP ‖ ≤ ε̃. The required bounds on α are also the same as those needed for Lemma 2.24

to hold. We conclude that, w.p. at least 1− 12n−12,

λmax

(
1

α

∑
t∈J α

Φ ˆ̀
t
ˆ̀′
tΦ

)

≤ ε̃2(λ+ + 0.01λ+)[1 + 6
√
ρrowf(1.2)2 + 6f

√
ρrow1.2]

≤ 2.6ε̃2fλ− < ωevals

68

This follows since ωevals = 5ε̃2λ+ = 5ε̃2fλ−. Since Det0 holds, t̂j = tj,∗. Thus, we have a total

of b tj+1−tj,∗−Kα−α
α c intervals J α that are subsets of [t̂j,fin, tj+1). Moreover, b tj+1−tj,∗−Kα−α

α c ≤

b tj+1−tj−Kα−α
α c ≤ b tj+1−tj

α c − (K + 1) since α ≤ α. Thus,

Pr(NoFalseDets|Γj−1,end ∩Det0 ∩ ProjSVD ∩Del)

≥ (1− 12n−12)b
tj+1−tj

α
c−(K+1)

On the other hand, if we condition on Γj−1,end ∩Det0 ∩Det1 ∩ ProjSVD ∩Del, then t̂j = tj,∗ + α.

Thus,

Pr(NoFalseDets|Γj−1,end ∩Det0 ∩Det1 ∩ ProjSVD ∩Del)

≥ (1− 12n−12)b
tj+1−tj

α
c−(K+2)

We can now combine the above facts to bound Pr(Γj,end|Γj−1,end). Recall that p0 :=

Pr(Det0|Γj−1,end). Clearly, the events (Det0 ∩ ProjSVD ∩Del ∩ NoFalseDets) and (Det0 ∩Det1 ∩

ProjSVD ∩Del ∩NoFalseDets) are disjoint. Thus,

Pr(Γj,end|Γj−1,end)

= p0 Pr(ProjSVD ∩Del ∩NoFalseDets|Γj−1,end ∩Det0)

+ (1− p0) Pr(Det1|Γj−1,end ∩Det0)×

Pr(ProjSVD ∩Del ∩NoFalseDets|Γj−1,end ∩Det0 ∩Det1)

≥ p0(1− 12n−12)K+1(1− 12n−12)b
tj+1−tj

α
c−(K+1)

+ (1− p0)(1− 12n−12)(1− 12n−12)K+1×

(1− 12n−12)b
tj+1−tj

α
c−(K+2)

= (1− 12n−12)b
tj+1−tj

α
c ≥ (1− 12n−12)tj+1−tj .

69

Since the events Γj,end are nested, the above implies that

Pr(ΓJ,end|Γ0,end) =
∏
j

Pr(Γj,end|Γj−1,end)

≥
∏
j

(1− 12n−12)tj+1−tj

= (1− 12n−12)d ≥ 1− 12dn−12.

2.10 Appendix B: Proof of Theorem 2.7: PCA in data-dependent noise with

partial subspace knowledge

We prove Theorem 2.7 with the modification given in Remark 2.8. Thus we condition on E0

defined in the remark. Recall that Φ := I − P̂∗P̂∗
′. Let

ΦProt
QR
= ErotRrot (2.16)

denote the reduced QR decomposition of (ΦProt). Here, and in the rest of this proof, we write

things in a general fashion to allow Prot to contain more than one direction. This makes it easier

to understand how our guarantees extend to the more general case (Prot being an n × rch basis

matrix with rch > 1) easier. The proof uses the following simple lemma at various places.

Lemma 2.21. Assume that E0 holds. Then,

1. ‖M1,tPfix‖ ≤ q0, ‖M1,tPch‖ ≤ q0 and ‖M1,tProt‖ ≤ qrot

2. ‖ΦPfix‖ ≤ ε̃, ‖ΦPch‖ ≤ ε̃, ‖ΦPnew‖ ≤ 1,

3. ‖Rrot‖ = ‖ΦProt‖ ≤ ε̃| cos θ|+ | sin θ| ≤ ε̃+ | sin θ|

4. σmin(Rrot) = σmin(ΦProt) ≥
√

sin2 θ(1− ε̃2)− 2ε̃| sin θ|

5. ‖Φ`t‖ ≤ 2ε̃
√
ηrλ+ + | sin θ|

√
ηλch.

Proof of Lemma 2.21. Item 1 follows because ‖M1,tP∗‖ ≤ q0 ≤ 2ε̃ and ‖M1,tP∗‖ =

‖M1,t[Pfix,Pch]‖ ≥ ‖M1,tPfix‖. Similarly, ‖M1,tP∗‖ ≥ ‖M1,tPch‖. The first two claims of item 2

70

follow because ‖ΦP∗‖ ≤ ε̃ and the bound on item 1. Third claim uses ‖ΦPnew‖ ≤ ‖Φ‖‖Pnew‖ = 1.

The fourth claim uses triangle inequality and definition of Prot. For Item 3, recall that ΦProt
QR
=

ErotRrot. Thus, σi(Rrot) = σi(ΦProt). Thus ‖Rrot‖ = ‖ΦProt‖ ≤ ε̃+ | sin θ|

Item 4: From above, σmin(Rrot) = σmin(ΦProt). Moreover, σmin(ΦProt) =√
λmin(Prot

′Φ′ΦProt) =
√
λmin(Prot

′ΦProt). We bound this as follows. Recall that Φ = I− P̂∗P̂∗
′.

λmin(Prot
′ΦProt) ≥ λmin(cos2 θPch

′ΦPch)

+ λmin(sin2 θPnew
′ΦPnew)

− 2| sin θ|| cos θ| ‖Pch
′ΦPnew‖

≥ 0 + λmin(sin2 θPnew
′ΦPnew)− 2ε̃| sin θ|

= sin2 θλmin(I − Pnew
′P̂∗P̂∗

′Pnew)− 2ε̃| sin θ|

= sin2 θ(1− ‖Pnew
′P̂∗‖2)− 2ε̃| sin θ|

≥ sin2 θ(1− ε̃2)− 2ε̃| sin θ|

The last inequality used Lemma 2.10.

Item 5: Using the previous items and the definition of η,

‖Φ`t‖ := ‖Φ(Pfixat,fix + Protat,ch)‖

≤ ‖ΦPfixat,fix‖+ ‖ΦProtat,ch‖

≤
(
ε̃
√
ηrλ+ + (ε̃| cos θ|+ | sin θ|)

√
ηrchλch

)

2.11 Appendix C: Proof of Theorem 2.7

Proof of Theorem 2.7. We have

SE(P̂ ,P) = SE([P̂∗, P̂rot], [Pfix,Prot])

≤ SE([P̂∗, P̂rot],Pfix) + SE([P̂∗, P̂rot],Prot)

≤ ε̃+ SE([P̂∗, P̂rot],Prot)

71

where the last inequality used Lemma 2.21. Consider SE([P̂∗, P̂rot],Prot).

SE([P̂∗, P̂rot],Prot) ≤
∥∥∥(I − P̂rotP̂rot

′)Erot

∥∥∥ ‖Rrot‖

≤ SE(P̂rot,Erot)(ε̃+ | sin θ|) (2.17)

The last inequality used Lemma 2.21. To bound SE(P̂rot,Erot), we use the Davis-Kahan sin θ

theorem [9] given below.

Theorem 2.22 (Davis-Kahan sin θ theorem). Consider n×n Hermitian matrices, D and D̂ such

that

D =

[
EE⊥

]A 0

0 Arest


 E′

E⊥
′


D̂ =

[
F F⊥

]Λ 0

0 Λrest


 F ′

F⊥
′


where [E,E⊥] and [F ,F⊥] are orthogonal matrices and rank(F) = rank(E). Let

H = D̂ −D.

If λmin(A)− λmax(Arest)− ‖H‖ > 0 and rank(E) = rank(F), then,

∥∥(I − FF ′
)
E
∥∥ ≤ ‖H‖

λmin(A)− λmax(Arest)− ‖H‖
. (2.18)

To use this result to bound SE(P̂rot,Erot), let D̂ := Dobs = 1
α

∑
t Φytyt

′Φ. Its top eigenvector

is P̂rot. We need to define a matrix D that is such that its top eigenvector is Erot and the gap

between its first and second eigenvalues is more than ‖H‖. Consider the matrix

D := ErotAErot
′ + Erot,⊥ArestErot,⊥

′ where

A := Erot
′
(

1

α

∑
Φ`t`t

′Φ

)
Erot,

Arest := Erot,⊥
′
(

1

α

∑
Φ`t`t

′Φ

)
Erot,⊥.

72

If λmax(Arest) < λmin(A), then Erot is the top eigenvector of D. Moreover, if λmax(Arest) <

λmin(A)− ‖H‖, then the gap requirement holds too. Thus, by the sin θ theorem,

SE(P̂rot,Erot) =
∥∥∥(I − P̂rotP̂rot

′
)
Erot

∥∥∥
≤ ‖H‖
λmin(A)− λmax(Arest)− ‖H‖

(2.19)

Here again, we should point out that, in the simple case that we consider where Prot is a vector (only

one direction changes), A is a non-negative scalar and λmin(A) = A. However the above discussion

applies even in the general case when rch > 1. The rest of the proof obtains high probability bounds

on the terms in the above expression. ‖H‖ =
∥∥∥D − D̂

∥∥∥ can be bounded as follows.

Lemma 2.23. Let

term11 = 1
α

∑
tErotErot

′Φ`t`t
′ΦErot,⊥Erot,⊥

′. Then,

‖H‖ ≤ 2

∥∥∥∥ 1

α

∑
Φ`twt

′Φ

∥∥∥∥+ 2 ‖term11‖

+

∥∥∥∥ 1

α

∑
Φwtwt

′Φ

∥∥∥∥+ 2

∥∥∥∥ 1

α

∑
Φ`tzt

′Φ

∥∥∥∥
+

∥∥∥∥ 1

α

∑
Φztzt

′Φ

∥∥∥∥

73

Proof of Lemma 2.23. Recall that H = D̂ −D. Thus

H =

(
D̂ − 1

α

∑
Φ`t`t

′Φ

)
+

(
1

α

∑
Φ`t`t

′Φ−D

)
=

(
1

α

∑
Φytyt

′Φ− 1

α

∑
Φ`t`t

′Φ

)
+

((
ErotErot

′ + Erot,⊥Erot,⊥
′) 1

α

∑
Φ`t`t

′Φ×

(
ErotErot

′ + Erot,⊥Erot,⊥
′)−D

)
=

(
1

α

∑
Φwt`t

′Φ +
1

α

∑
Φ`twt

′Φ

)
+

(
1

α

∑
Φzt`t

′Φ +
1

α

∑
Φ`tzt

′Φ

)
+

(
1

α

∑
Φwtwt

′Φ +
1

α

∑
Φztzt

′Φ

)
+

(
1

α

∑
ErotErot

′Φ`t`t
′ΦErot,⊥Erot,⊥

′
)

+

(
1

α

∑
Erot,⊥Erot,⊥

′Φ`t`t
′ΦErotErot

′
)

Using triangle inequality the bound follows.

The next lemma obtains high probability bounds on the above terms and the two other terms

from (2.19).

Lemma 2.24. Assume that the assumptions of Theorem 2.7 with the modification given in Remark

2.8 hold. Let ε0 = 0.01| sin θ|(ε̃ + qrot), ε1 = 0.01(q2
rot + ε̃2), and ε2 = 0.01. For an α ≥ α0 :=

Cηmax
{
fr log n, ηf2(r + log n)

}
, conditioned on E0, all the following hold w.p. at least 1−12n−12:

1.
∥∥ 1
α

∑
t Φ`twt

′Φ
∥∥ ≤ [√b0 (2ε̃2f + (ε̃+ | sin θ|)qrot

)
+ ε0

]
λch,

2.
∥∥ 1
α

∑
t Φwtwt

′Φ
∥∥ ≤ [√b0 (4ε̃2f + q2

rot

)
+ ε1

]
λch,

3. λmin(A) ≥ (sin2 θ(1− ε̃2)− 2ε̃| sin θ|)(1− ε2)λch − 2ε̃(ε̃+ | sin θ|)ε2λch,

4. λmax(Arest) ≤ ε̃2λ+ + ε̃2ε2λch,

5. ‖term11‖ ≤
[
ε̃2f + 2ε̃2ε2 + ε̃| sin θ|ε2|

]
λch.

74

6.
∥∥ 1
α

∑
t Φ`tzt

′Φ
∥∥ ≤ ε0λch

7.
∥∥ 1
α

∑
t Φztzt

′Φ
∥∥ ≤ [(4ε̃2f + q2

rot

)
+ ε1

]
λch

Using Lemma 2.24 and substituting for ε0, ε1, ε2, we conclude the following. Conditioned on E0,

with probability at least 1− 12n−12,

SE(P̂rot,Erot) ≤

2
√
b0
[
2ε̃2f + (ε̃+ | sin θ|)qrot

]
+
√
b0
[
4ε̃2f + q2

rot

]
+ 2

[
ε̃2f + 2ε̃2ε2 + ε̃| sin θ|ε2

]
+ 4ε0 + 2ε1

(sin2 θ(1− ε̃2)− 2ε̃| sin θ|)(1− ε2)
− 2ε̃(ε̃+ | sin θ|)ε2 − (ε̃2f + ε̃2ε2)− numer

,

where numer denotes the numerator expression. The numerator, numer, expression can be simpli-

fied to

numer ≤ qrot [2
√
ρrowf(ε̃+ | sin θ|) + 0.04| sin θ|]

+ q2
rot(
√
b0 + 0.02) + ε̃

[
(8
√
ρrowf + 2)ε̃f

+ (2ε̃+ | sin θ|)0.01 + 0.04| sin θ|+ 0.02ε̃
]
.

Further, using ε̃f ≤ 0.01| sin θ|,
√
b0 ≤ 0.1 and qrot ≤ 0.2| sin θ|,

numer ≤ | sin θ|(0.242qrot + 0.07ε̃) + 0.12q2
rot

≤ | sin θ|(0.27qrot + 0.07ε̃)

This can be loosely upper bounded by 0.26 sin2 θ. We use this loose upper bound when this term

appears in the denominator. Following a similar approach for the denominator, denoted denom,

denom

≥ sin2 θ

[
1− ε̃2 − 2ε̃

| sin θ|
− 3ε̃2ε2

sin2 θ
− ε̃2f

sin2 θ
− numer

sin2 θ

]
≥ sin2 θ

[
0.95− numer

sin2 θ

]
≥ 0.69 sin2 θ

Thus,

SE(P̂rot,Erot) ≤
(0.27qrot + 0.07ε̃)| sin θ|

0.69 sin2 θ

≤ 0.39qrot + 0.1ε̃

| sin θ|
,

75

Using (2.17) and ε̃ ≤ ε̃f ≤ 0.01| sin θ|,

SE(P̂ ,Prot) ≤ (ε̃+ | sin θ|)0.39qrot + 0.1ε̃

| sin θ|

≤ 1.01| sin θ|0.39qrot + 0.1ε̃

| sin θ|

≤ 0.40qrot + 0.11ε̃.

Proof of the last claim: lower bound on λmax(Dobs). Using Weyl’s inequality,

λmax(Dobs) ≥ λmax(D)− ‖H‖ ≥ λmax(A)− ‖H‖

≥ λmin(A)− ‖H‖.

Using the bounds from Lemmas 2.23 and 2.24 and (2.12), we get the lower bound.

2.12 Appendix D: Proof of Lemma 2.24: high probability bounds on the sin θ

theorem bound terms

Proof of Lemma 2.24. Recall the definition of the event E0 from Remark 2.8. To prove this lemma,

we first bound the probabilities of all the events conditioned on {P̂∗, Z}, for values of {P̂∗, Z} ∈ E0.

Then we use the following simple fact.

Fact 2.25. If Pr(Event|{P̂∗, Z}) ≥ p0 for all {P̂∗, Z} ∈ E0, then,

Pr(Event|E0) ≥ p0.

In the discussion below, we condition on {P̂∗, Z}, for values of {P̂∗, Z} in E0. Conditioned on

{P̂∗, Z}, the matrices Erot, Erot,⊥, Φ, etc, are constants (not random). All the terms that we bound

in this lemma are either of the form
∑

t∈J α g1(P̂∗, Z)`t`t
′g2(P̂∗, Z), for some functions g1(.), g2(.),

or are sub-matrices of such a term.

Since the pair {P̂∗, Z} is independent of the `t’s for t ∈ J α, and these `t’s are mutually

independent, hence, even conditioned on {P̂∗, Z}, the same holds: the `t’s for t ∈ J α are mutually

independent. Thus, once we condition on {P̂∗, Z}, the summands in the terms we need to bound are

76

mutually independent. As a result, matrix Bernstein (Theorem 2.27) or Vershynin’s sub-Gaussian

result (Theorem 2.28) are applicable.

Item 1 : In the proof of this and later items, we condition on {P̂∗, Z}, for values of {P̂∗, Z} in

E0.

Since ‖Φ‖ = 1, ∥∥∥∥∥ 1

α

∑
t

Φ`twt
′Φ

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

α

∑
t

Φ`twt
′

∥∥∥∥∥ .
To bound the RHS above, we will apply matrix Bernstein (Theorem 2.27) with Zt = Φ`twt

′. As

explained above, conditioned on {P̂∗, Z}, the Zt’s are mutually independent. We first obtain a

bound on the expected value of the time average of the Zt’s and then compute R and σ2 needed

by Theorem 2.27. By Cauchy-Schwarz,∥∥∥∥∥E
[

1

α

∑
t

Φ`twt
′

]∥∥∥∥∥
2

=

∥∥∥∥∥ 1

α

∑
t

ΦPΛP ′M1,t
′M2,t

′

∥∥∥∥∥
2

(a)

≤

∥∥∥∥∥ 1

α

∑
t

(
ΦPΛP ′M1,t

′) (M1,tPΛP ′Φ
)∥∥∥∥∥×∥∥∥∥∥ 1

α

∑
t

M2,tM2,t
′

∥∥∥∥∥
(b)

≤ b0

[
max
t

∥∥ΦPΛP ′M1,t
′∥∥2
]

≤ b0
[

max
t

(∥∥ΦPfixΛfixPfix
′M1,t

′∥∥
+
∥∥ΦProtΛchProt

′M1,t
′∥∥)2]

≤ b0
[
ε̃q0λ

+ + (ε̃+ | sin θ|) qrotλch

]2
(2.20)

where (a) follows by Cauchy-Schwarz (Theorem 2.26) with Xt = ΦPΛP ′M1,t
′ and Yt = M2,t,

(b) follows from the assumption on M2,t, and the last inequality follows from Lemma 2.21. Using

q0 ≤ 2ε̃, ∥∥∥∥E [1

α

∑
Φ`twt

′
]∥∥∥∥ ≤√b0 [2ε̃2λ+ + (ε̃+ | sin θ|) qrotλch

]
.

77

To compute R, using Lemma 2.21 and using q0 ≤ 2ε̃ and qrot < | sin θ|,

‖Zt‖ ≤ ‖Φ`t‖ ‖wt‖ ≤
(
ε̃
√
ηrλ+ + (ε̃+ | sin θ|)

√
ηλch

)
(
q0

√
ηrλ+ + qrot

√
ηλch

)
≤ 4ε̃2ηrλ+ + | sin θ|qrotηλch

+ 2ε̃η
√
rλ+λch(qrot + | sin θ|)

≤ c1ε̃| sin θ|ηrλ+ + c2| sin θ|qrotηλch

:= R

for numerical constants c1, c2. Next we compute σ2. Since wt’s are bounded r.v.’s, we have∥∥∥∥∥ 1

α

∑
t

E[ZtZt
′]

∥∥∥∥∥ =

∥∥∥∥∥ 1

α

∑
t

E
[
Φ`twt

′wt`t
′Φ
]∥∥∥∥∥

=

∥∥∥∥ 1

α
E[‖wt‖2 Φ`t`t

′Φ]

∥∥∥∥
≤
(

max
wt
‖wt‖2

)∥∥∥∥∥ 1

α

∑
t

E
[
Φ`t`t

′Φ
]∥∥∥∥∥

≤
(
8ε̃2ηrλ+ + 2q2

rotηλch

)
(
2ε̃2λ+ + sin2 θλch

)
≤ c1q

2
rot sin2 θη(λch)2 + c2ε̃

2ηr sin2 θλ+λch

:= σ2
1

for numerical constants c1 and c2. The above bounds again used q0 ≤ 2ε̃ and qrot < | sin θ|.

For bounding
∥∥ 1
α

∑
t E[Zt

′Zt]
∥∥ we get the same expression except for the values of c1, c2. Thus,

applying matrix Bernstein (Theorem 2.27) followed by Fact 2.25,

Pr

(∥∥∥∥∥ 1

α

∑
t

Φ`twt
′

∥∥∥∥∥
≤ √ρrowf

[
2ε̃2λ+ + (ε̃+ | sin θ|)qrotλch

]
+ ε

∣∣∣∣E0

)

≥ 1− 2n exp

 −α

4 max
{
σ2

1
ε2
, R

ε

}
 .

78

Let ε = ε0λch where ε0 = 0.01 sin θ(qrot + ε̃). Then, clearly,

σ2

ε2
≤ cηmax{1, fr} = cηfr, and

R

ε
≤ cηmax{1, fr} = cηfr.

Hence, for the probability to be of the form 1− 2n−12 we require that α ≥ α(1) where

α(1) := C · ηf(r log n)

Thus, if α ≥ α(1), conditioned on E0, the bound on
∥∥ 1
α

∑
t Φ`twt

′Φ
∥∥ given in Lemma 2.24 holds

w.p. at least 1− 2n−12.

Item 2 : We use Theorem 2.27 (matrix Bernstein) with Zt := Φwtwt
′Φ. The proof approach

is similar to that of the proof of item 1. First we bound the norm of the expectation of the time

average of Zt: ∥∥∥∥E [1

α

∑
Φwtwt

′Φ

]∥∥∥∥
=

∥∥∥∥ 1

α

∑
ΦM2,tM1,tPΛP ′M1,t

′M2,t
′Φ

∥∥∥∥
≤
∥∥∥∥ 1

α

∑
M2,tM1,tPΛP ′M1,t

′M2,t
′
∥∥∥∥

(a)

≤
(∥∥∥∥∥ 1

α

∑
t

M2,tM2,t
′

∥∥∥∥∥[
max
t

∥∥M2,tM1,tPΛP ′M1,t(·)′
∥∥2
])1/2

(b)

≤
√
b0

[
max
t

∥∥M1,tPΛP ′M1,t
′M2,t

′∥∥]
(c)

≤
√
b0
[
q2

0λ
+ + q2

rotλch

]
≤
√
b0
[
4ε̃2λ+ + q2

rotλch

]
.

(a) follows from Cauchy-Schwarz (Theorem 2.26) with Xt = M2,t and Yt = M1,tPΛP ′M1,t
′M2,t

′,

(b) follows from the assumption on M2,t, and (c) follows from Lemma 2.21. The last inequality

79

used q0 ≤ 2ε̃. To obtain R,

‖Zt‖ =
∥∥Φwtwt

′Φ
∥∥

≤ 2
(
‖ΦMtPfixat,fix‖2 + ‖ΦMtProtat,ch‖2

)
≤ 2

(
q2

0ηrλ
+ + q2

rotηλch

)
≤ 8ε̃2rηλ+ + 2q2

rotηλch := R

To obtain σ2, ∥∥∥∥∥ 1

α

∑
t

E
[
Φwt(Φwt)

′(Φwt)wt
′Φ
]∥∥∥∥∥

=

∥∥∥∥∥ 1

α

∑
t

E
[
Φwtwt

′Φ ‖Φwt‖2
]∥∥∥∥∥

≤
(

max
wt
‖Φwt‖2

)∥∥ΦMtPΛP ′Mt
′Φ
∥∥

≤ 2
(
q2

0rηλ
+ + q2

rotηλch

) (
q2

0λ
+ + q2

rotλch

)
≤ c1q

4
rotη(λch)2 + c2q

2
rotε̃

2ηrλ+λch := σ2

Applying matrix Bernstein (Theorem 2.27) followed by Fact 2.25, we have

Pr

(∥∥∥∥∥ 1

α

∑
t

Φwtwt
′Φ

∥∥∥∥∥ ≤√b0 [4ε̃2λ+ + q2
rotλch

]
+ ε

∣∣∣∣E0

)

≥ 1− n exp

(
−αε2

2(σ2 +Rε)

)
Let ε = ε1λch, ε1 = 0.01(q2

rot + ε̃2). Then we get

R

ε
≤ cηmax{1, rf}, and

σ2

ε2
≤ cηmax{1, rf}.

For the success probability to be of the form 1− 2n−12 we require α ≥ α(2) where

α(2) := Cη · 13f(r log n)

Thus, if α ≥ α(2),

Pr
(∥∥ 1

α

∑
t Φwtwt

′Φ
∥∥ ≤ [√b0 (4ε̃2f + q2

rot

)
+ ε1

]
λch|E0

)
≥ 1− n−12.

80

Item 3 : Expanding the expression for A,

A = Erot
′ΦPfix

(
1

α

∑
t

at,fixat,fix
′

)
Pfix

′ΦErot

+ Erot
′ΦProt

(
1

α

∑
t

at,chat,ch
′

)
Prot

′ΦErot

+ term1 + term1′

where term1 := Erot
′ΦPfix

(
1
α

∑
t at,fixat,ch

′)Prot
′ΦErot. Since the first term on the RHS is positive

semi-definite,

λmin(A)

≥ λmin

(
Erot

′ΦProt

(
1

α

∑
t

at,chat,ch
′

)
Prot

′ΦErot

)

+ λmin(term1 + term1′)

≥ λmin

(
Erot

′ΦProt

(
1

α

∑
t

at,chat,ch
′

)
Prot

′ΦErot

)

− 2

∥∥∥∥∥Erot
′ΦProt

(
1

α

∑
t

at,chat,fix
′

)
Pfix

′ΦErot

∥∥∥∥∥ (2.21)

Under our current assumptions, the at,ch’s are scalars, so A and 1
α

∑
t at,chat,ch

′ are actually scalars.

However, we write things in a general fashion (allowing at,ch’s to be rch length vectors), so as to

make our later discussion of the rch > 1 case easier. Using (2.21),

λmin(A)

≥ λmin

(
Erot

′ΦProtProt
′ΦErot

)
λmin

(
1

α

∑
t

at,chat,ch
′

)

− 2
∥∥Erot

′ΦProt

∥∥∥∥Pfix
′ΦErot

∥∥∥∥∥∥∥
(

1

α

∑
t

at,chat,fix
′

)∥∥∥∥∥
≥ (sin2 θ(1− ε̃2)− 2ε̃| sin θ|)λmin

(
1

α

∑
t

at,chat,ch
′

)

− 2ε̃(ε̃+ | sin θ|)

∥∥∥∥∥
(

1

α

∑
t

at,chat,fix
′

)∥∥∥∥∥ . (2.22)

81

The second inequality follows using Erot
′ΦProt = Erot

′ErotRrot = Rrot and Lemma 2.21. The

first inequality is straightforward if at,ch’s are scalars (current setting); it follows using Ostrowski’s

theorem [13] in the general case.

To bound the remaining terms in the above expression, we use Vershynin’s sub-Gaussian result

[29, Theorem 5.39] summarized in Theorem 2.28. To apply this, recall that (at)i are bounded

random variables satisfying |(at)i| ≤
√
ηλi. Hence they are sub-Gaussian with sub-Gaussian norm

√
ηλi [29]. Using [29, Lemma 5.24], the vectors at are also sub-Gaussian with sub-Gaussian norm

bounded by maxi
√
ηλi =

√
ηλ+. Thus, applying Theorem 2.28 with K ≡

√
ηλ+, ε ≡ ε2λch,

N ≡ α, nw ≡ r, followed by using Fact 2.25, if α ≥ α(3) := C(r log 9+10 logn)f2

ε22
, then,

Pr

(∥∥∥∥∥ 1

α

∑
t

atat
′ −Λ

∥∥∥∥∥ ≤ ε2λch

∣∣∣∣E0

)
≥ 1− 2n−12. (2.23)

We could also have used matrix Bernstein to bound ‖
∑

t atat
′‖. However, since the at’s are r-length

vectors and r � n, the Vershynin result requires a smaller lower bound on α.

If B1 is a sub-matrix of a matrix B, then ‖B1‖ ≤ ‖B‖. Thus, we can also use (2.23) for

bounding the norm of various sub-matrices of
(

1
α

∑
t atat

′ −Λ
)
. Doing this, we get

Pr

(
λmax

(
1

α

∑
t

at,fixat,fix
′

)
≤ λ+ + ε2λch

∣∣∣∣E0

)

≥ 1− 2n−12, (2.24)

Pr

(
λmax

(
1

α

∑
t

at,chat,ch
′

)
≤ λch + ε2λch

∣∣∣∣E0

)

≥ 1− 2n−12, (2.25)

Pr

(
λmin

(
1

α

∑
t

at,chat,ch
′

)
≥ λch − ε2λch

∣∣∣∣E0

)

≥ 1− 2n−12, and (2.26)

Pr

(∥∥∥∥∥ 1

α

∑
t

at,chat,fix
′

∥∥∥∥∥ ≤ ε2λch

∣∣∣∣E0

)

≥ 1− 2n−12. (2.27)

82

Combining (2.22), (2.26) and (2.27), if α ≥ α(3),

Pr

(
λmin(A) ≥ (sin2 θ(1− ε̃2)− 2ε̃| sin θ|)(1− ε2)λch

−2ε̃(ε̃+ | sin θ|)ε2λch

∣∣∣∣E0

)
≥ 1− 4n−12 (2.28)

Item 4 : Recall that Erot,⊥
′ΦProt = 0. Thus,

λmax(Arest) ≤ λmax

(
Erot,⊥

′ΦPfixPfix
′ΦErot,⊥

)
×

λmax

(
1

α

∑
t

at,fixat,fix
′

)
(2.29)

where the last inequality follows from Ostrowski’s theorem [13]. Using this and (2.24), if α ≥ α(3),

Pr

(
λmax(Arest) ≤ ε̃2λ+ + ε̃2ε2λch

∣∣∣∣E0

)
≥ 1− 2n−12

Item 5 : Recall that

term11 = 1
α

∑
ErotErot

′Φ`t`t
′ΦErot,⊥Erot,⊥

′. As in earlier items, we can expand this into a sum of

four terms using `t = Pfixat,fix +Protat,ch. Then using Erot,⊥
′ΦProt = 0 and ‖Erot‖ = ‖Erot,⊥‖ = 1,

we get

‖term11‖ ≤ ‖ΦPfix‖
∥∥Pfix

′Φ
∥∥λmax

(
1

α

∑
t

at,fixat,fix
′

)

+ ‖ΦProt‖
∥∥Pfix

′Φ
∥∥∥∥∥∥∥ 1

α

∑
t

at,fixat,ch
′

∥∥∥∥∥ (2.30)

Using (2.24) and (2.27), if α ≥ α(3), w.p. at least 1 − 4n−12, conditioned on E0, ‖term11‖ ≤

ε̃2(λ+ + ε2λch) + (ε̃(ε̃+ | sin θ|))ε2λch.

Item 6 : Consider
∥∥ 1
α

∑
t Φ`tzt

′∥∥. We will apply matrix Bernstein (Theorem 2.27). We have∥∥E[1
α

∑
t Φ`tzt

′]∥∥ = 0 since `t’s are independent of zt’s and both are zero mean. We obtain R as

83

follows

∥∥Φ`tzt
′∥∥ = ‖Φ`t‖ ‖zt‖

≤
(
ε̃
√
ηrλ+ + (ε̃+ | sin θ|)

√
ηλch

)
bz

≤
(

2ε̃
√
ηrλ+ + | sin θ|

√
ηλch

)(
q0

√
rλ+ + qrot

√
λch

)
≤ 4ε̃2√ηrλ+ + | sin θ|qrot

√
ηλch

+ 2ε̃
√
η
√
rλ+λch(qrot + | sin θ|)

≤ c1ε̃| sin θ|
√
ηrλ+ + c2| sin θ|qrot

√
ηλch := R

for numerical constants c1, c2. Next we compute σ2 as follows. First consider∥∥∥∥∥ 1

α

∑
t

E
[
Φ`tzt

′zt`t
′Φ
]∥∥∥∥∥ =

∥∥∥∥ 1

α
E[‖zt‖2Φ`t`t

′Φ]

∥∥∥∥
≤
(

max
zt
‖zt‖2

)∥∥∥∥∥ 1

α

∑
t

E[Φ`t`t
′Φ]

∥∥∥∥∥
≤ (8ε̃2rλ+ + 2q2

rotλch)(2ε̃2λ+ + sin2 θλch)

≤ c1q
2
rot sin2 θη(λch)2 + c2ε̃

2ηr sin2 θλ+λch := σ2
1

we note here that since b2z = rλ+
z , the other term in the expression for σ2 is the same (modulo

constants) as σ2
1. Furthermore, notice that the expressions for both R and σ2 are the same as the

ones obtained in Item 1. Thus, we use the same deviation, ε0 here, and hence also obtain the same

sample complexity, α; i.e., we let ε = ε0λch where ε0 = 0.01 sin θ(qrot + ε̃), and obtain α ≥ α(1)

derived in item 1.

Item 7 : This term follows in a similar fashion as Item 2, 6 and α ≥ α(2) suffices.

2.13 Appendix E: Proof of Projected CS Lemma

Proof of Lemma 2.15. The first four claims were already proved below the lemma statement.

Consider the fifth claim (exact support recovery). Recall that for any t ∈ Jk, vt satisfies

‖vt‖ ≤ C(2ε̃
√
rλ+ + ζ+

k−1

√
λch) := bv,t (for t ∈ J1 and t ∈ J0 the bounds are the same) with

84

C =
√
η, and thus bt := Ψ(`t + vt) satisfies

‖bt‖ = ‖Ψ(`t + vt)‖ ≤ ‖Ψ`t‖+ ‖Ψ‖ ‖vt‖

≤
(
ε̃
√
rηλ+ + ζ+

k−1

√
ηλch

)
+
√
η
(

2ε̃
√
rλ+ + ζ+

k−1

√
λch

)
≤ 2
√
η
(

2ε̃
√
rλ+ + 0.5k−1 · 0.06| sin θ|

√
λch

)
:= bb,t = 2bv,t

From the lower bound on xmin,t in Theorem 2.2 or that in Corollary 2.3, bb,t < xmin,t/15. Also, we

set ξt = xmin,t/15. Using these facts, and δ2s(Ψ) ≤ 0.12 < 0.15 (third claim of this lemma), [4,

Theorem 1.2] implies that

‖x̂t,cs − xt‖ ≤ 7ξt = 7xmin,t/15

Thus,

|(x̂t,cs − xt)i| ≤ ‖x̂t,cs − xt‖ ≤ 7xmin,t/15 < xmin,t/2

We have ωsupp,t = xmin,t/2. Consider an index i ∈ Tt. Since |(xt)i| ≥ xmin,t,

xmin,t − |(x̂t,cs)i| ≤ |(xt)i| − |(x̂t,cs)i|

≤ |(xt − x̂t,cs)i| <
xmin,t

2

Thus, |(x̂t,cs)i| >
xmin,t

2 = ωsupp,t which means i ∈ T̂t. Hence Tt ⊆ T̂t. Next, consider any j /∈ Tt.

Then, (xt)j = 0 and so

|(x̂t,cs)j | = |(x̂t,cs)j)| − |(xt)j |

≤ |(x̂t,cs)j − (xt)j | ≤ bb,t <
xmin,t

2

which implies j /∈ T̂t and so T̂t ⊆ Tt. Thus T̂t = Tt.

85

With T̂t = Tt, the sixth claim follows easily. Since Tt is the support of xt, xt = ITtITt
′xt, and

so

x̂t = ITt
(
ΨTt

′ΨTt
)−1

ΨTt
′(Ψ`t + Ψxt)

= ITt
(
ΨTt

′ΨTt
)−1

ITt
′Ψ(`t + vt) + xt

since ΨTt
′Ψ = I ′TtΨ

′Ψ = ITt
′Ψ. Thus et = x̂t − xt satisfies (2.10). Using (2.10) and the earlier

claims,

‖et‖ ≤
∥∥∥(ΨTt ′ΨTt)−1

∥∥∥∥∥ITt ′Ψ(`t + vt)
∥∥

≤ 1.2
[∥∥ITt ′Ψ`t

∥∥+ ‖vt‖
]

When k = 1, Ψ = I − P̂∗P̂∗
′. Thus, using (2.13) and ‖P̂∗′Pnew‖ ≤ ε̃ (follows from Lemma 2.10),

∥∥ITt ′Ψ`t
∥∥ ≤ ‖ΨP∗,fix‖ ‖at,fix‖

+ (‖ΨP∗,ch cos θ‖+
∥∥ITt ′ΨPnew sin θ

∥∥) ‖at,ch‖

≤ ε̃
√
ηrλ+

+ ε̃| cos θ|
√
ηλch + (0.1 + ε̃)| sin θ|

√
ηλch

≤ 2ε̃
√
ηrλ+ + 0.11| sin θ|

√
ηλch

also, in this interval, bv,t ≤ 2ε̃
√
ηrλ+ + 0.11| sin θ|

√
ηλch so that ‖et‖ ≤ 2.4 ·(

2ε̃
√
ηrλ+ + 0.11| sin θ|

√
ηλch

)
When k > 1, ‖ITt ′Ψ`t‖ ≤ ‖Ψ`t‖ ≤ ε̃

√
rηλ+ + ζ+

k−1

√
ηλch. and

the same bound holds on bv,t so that ‖et‖ ≤ 2.4 ·
(
ε̃
√
rηλ+ + ζ+

k−1

√
ηλch

)

2.14 Appendix F: Time complexity of s-ReProCS

The time-consuming steps of s-ReProCS are either l1 minimization or the subspace update

steps. Support estimation and LS steps are much faster and hence can be ignored for this discussion.

The computational complexity of l1 minimization (if the best solver were used) [30] is the cost of

multiplying the CS matrix or its transpose with a vector times log(1/ε) if ε is the bound on the

error w.r.t. the true minimizer of the program. In ReProCS, the CS matrix is of the form I − P̂ P̂ ′

86

where P̂ is of size n×r or n×(r+1), thus multiplying a vector with it takes time O(nr). Thus, the

l1 minimization complexity per frame is O(nr log(1/ε)), and thus the total cost for d− ttrain frames

is O(nr log(1/ε)(d − ttrain)). The subspace update step consists of (d − ttrain − Jα)/α rank one

SVD’s on an n×α matrix (for either detecting subspace change or for projection-SVD) and J rank

r SVD’s on an n × α matrix (for subspace re-estimation). Thus the subspace update complexity

is at most O(n(d− ttrain)r log(1/ε)) and the total ReProCS complexity (without the initialization

step) is O(n(d− ttrain)r log(1/ε)).

If we assume that the initialization uses AltProj, AltProj is applied to a matrix of size n× ttrain

with rank r. Thus the initialization complexity is O(nttrainr
2 log(1/ε)). If instead GD [33] is used,

then the time complexity is reduced to O(nttrainrf log(1/ε)). Treating f as a constant (our discus-

sion treats condition numbers as constants), the final complexity of s-ReProCS is O(ndr log(1/ε)).

If s-ReProCS is used to only solve the RPCA problem (compute column span of the entire

matrix L), then the SVD based subspace re-estimation step can be removed. With this change, the

complexity of s-ReProCS (without the initialization step) reduces to just O(nd log(1/ε)) since only

1-SVDs are needed. Of course this would mean a slightly tighter bound on max-outlier-frac-col is

required – it will need to be less than c/(r + J).

2.15 Appendix G: Preliminaries: Cauchy-Schwarz, matrix Bernstein and

Vershynin’s sub-Gaussian result

Cauchy-Schwarz for sums of matrices says the following [22].

Theorem 2.26. For matrices X and Y we have∥∥∥∥∥ 1

α

∑
t

XtYt
′

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

α

∑
t

XtXt
′

∥∥∥∥∥
∥∥∥∥∥ 1

α

∑
t

YtYt
′

∥∥∥∥∥ (2.31)

Matrix Bernstein [24], conditioned on another r.v. X, says the following.

Theorem 2.27. Given an α-length sequence of n1 × n2 dimensional random matrices and a r.v.

X Assume the following. For all X ∈ C, (i) conditioned on X, the matrices Zt are mutually

87

independent, (i) P(‖Zt‖ ≤ R|X) = 1, and (iii) max
{∥∥ 1

α

∑
t E[Zt

′Zt|X]
∥∥ , ∥∥ 1

α

∑
t E[ZtZt

′|X]
∥∥} ≤

σ2. Then, for an ε > 0,

P

(∥∥∥∥∥ 1

α

∑
t

Zt

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

α

∑
t

E[Zt|X]

∥∥∥∥∥+ ε

∣∣∣∣X
)

≥ 1− (n1 + n2) exp

(
−αε2

2 (σ2 +Rε)

)
for all X ∈ C.

Vershynin’s result for matrices with independent sub-Gaussian rows [29, Theorem 5.39], condi-

tioned on another r.v. X, says the following.

Theorem 2.28. Given an N -length sequence of sub-Gaussian random vectors wi in Rnw , an r.v

X, and a set C. Assume that for all X ∈ C, (i) wi are conditionally independent given X; (ii)

the sub-Gaussian norm of wi is bounded by K for all i. Let W := [w1,w2, . . . ,wN]′. Then for an

0 < ε < 1 we have

P
(∥∥∥∥ 1

N
W ′W − 1

N
E
[
W ′W |X

]∥∥∥∥ ≤ ε∣∣∣∣X)
≥ 1− 2 exp

(
nw log 9− cε2N

4K4

)
for all X ∈ C. (2.32)

88

Original s-ReProCS(16.5ms) AltProj (26.0ms) RPCA-GD(29.5ms) GRASTA (2.5ms) PCP (44.6ms)

Original s-ReProCS(85.4ms) AltProj(95.7ms) RPCA-GD(122.5ms)GRASTA (22.6ms) PCP (318.3ms)

Original s-ReProCS(72.5ms)AltProj (133.1ms)RPCA-GD(113.6ms)GRASTA (18.9ms) PCP (240.7ms)

Figure 2.3: Comparison of background recovery performance is Foreground-Background Separation
tasks for MR (first two rows), SL (middle two rows) and LB (last two rows) sequences (first two rows).
The recovered background images are shown at t = ttrain + 140, 630 for MR, t = ttrain + 200, 999
for SL, and t = ttrain + 260, 610 for LB. Notice that for the LB sequence, all algorithms work fairly
well. In the MR sequence, since the s-ReProCS is able to tolerate larger max-outlier-frac-row, it is
able to completely remove the person. Further, only s-ReProCS background does not contain the
person or even his shadow. All others do. Finally, in the SL sequence, it is demonstrated that the
changing subspace model is much more appropriate for long sequences since only s-ReProCS and
GRASTA are able to recognize that the background has changed. GRASTA contains some artifacts,
but s-ReProCS is able to clearly isolate the person. The time taken per frame (in milliseconds) is
shown in parentheses above the respective video sequence. In all the videos, notice that s-ReProCS
is also faster than all algorithms with the exception of GRASTA which only works for the lobby
sequence that involves very little background changes.

89

CHAPTER 3. NEARLY OPTIMAL ROBUST SUBSPACE TRACKING

Praneeth Narayanamurthy and Namrata Vaswani

Dept. of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50010

Modified from a manuscript published in IEEE Journal of Selected Areas in Information Theory

Abstract

This work studies the robust subspace tracking (ST) problem. Robust ST can be simply

understood as a (slow) time-varying subspace extension of robust PCA. It assumes that the true

data lies in a low-dimensional subspace that is either fixed or changes slowly with time. The goal is

to track the changing subspaces over time in the presence of additive sparse outliers and to do this

quickly (with a short delay). We introduce a “fast” mini-batch robust ST solution that is provably

correct under mild assumptions. Here “fast” means two things: (i) the subspace changes can be

detected and the subspaces can be tracked with near-optimal delay, and (ii) the time complexity

of doing this is the same as that of simple (non-robust) PCA. Our main result assumes piecewise

constant subspaces (needed for identifiability), but we also provide a corollary for the case when

there is a little change at each time.

A second contribution is a novel non-asymptotic guarantee for PCA in linearly data-dependent

noise. An important setting where this is useful is for linearly data dependent noise that is sparse

with support that changes enough over time. The analysis of the subspace update step of our

proposed robust ST solution uses this result.

3.1 Introduction

Principal Components Analysis (PCA) is one of the most widely used and well studied dimension

reduction techniques. It is solved via singular value decomposition (SVD) following by retaining

90

the top r singular vectors for getting an r-dimensional subspace approximation. Robust PCA

(RPCA) refers to PCA in the presence of outliers. According to [3], it can be defined as the

problem of decomposing a given data matrix into the sum of a low-rank matrix (true data) and a

sparse matrix (outliers). The column space of the low-rank matrix then gives the desired principal

subspace (PCA solution). A common application of RPCA is in video analytics in separating

a video into a slow-changing background image sequence (modeled as a low-rank matrix) and a

foreground image sequence consisting of moving objects or people (modeled as a sparse matrix)

[3]. The RPCA problem has been extensively studied in the last decade since [3, 5] introduced the

principal components pursuit solution and obtained the first guarantees for it. Follow-up work by

Hsu et al [13] studied it further. Later work [25, 38, 6] has developed provable non-convex solutions

that are much faster. Alternating Projections or AltProj was the first such approach [25].

Robust Subspace Tracking (ST) can be simply understood as a (slow) time-varying subspace

extension of RPCA. It assumes that the true data lies in a low-dimensional subspace that is either

fixed or changes slowly with time. We focus on slow changing subspaces because it is not clear

how to distinguish the effect of a sudden subspace change from that of an outlier. The goal is

to track the changing subspaces over time in the presence of additive sparse outliers and to do

this quickly (with a short delay). Time-varying subspaces is a more appropriate model for long

data sequences, e.g., long surveillance videos, since if a single subspace model is used, the resulting

matrix may not be sufficiently low-rank. Moreover the tracking setting (short tracking delay) is

needed for applications where near real-time estimates are needed, e.g., video-based surveillance

(object tracking), monitoring seismological activity, or detection of anomalous behavior in dynamic

social networks. While many heuristics exist for robust ST, e.g., [27, 28, 11, 9, 8, 15, 42], there has

been little work on provably correct solutions [39, 24]. The first result [39] needed many restrictive

assumptions (most importantly it required assumptions on intermediate algorithm estimates) and

a large tracking delay (the delay was proportional to 1/ε2 to get a ε accurate estimate). The second

one [24] significantly improved upon [39], but still required a very specific model on subspace change,

needed an ε-accurate initial subspace estimate in order to guarantee ε-accurate recovery at later

91

time instants, and its tracking delay was r-times sub-optimal. Our work builds on [24] and removes

these, and two other more technical, limitations that we explained later.

Contributions. This work has two contributions. (1) First, we introduce a “fast” mini-batch

robust ST solution that is provably correct under mild assumptions. Here “fast” means two things:

(i) the subspace changes can be detected and the subspaces can be tracked with near-optimal delay

(the number of data samples required to track an r-dimensional subspace of Rn to ε accuracy is

within log factors of r); and (ii) the time complexity of doing this is just O(ndr log(1/ε)), which is,

order-wise, the same as that of solving the basic (non-robust) PCA problem for an n×d matrix. Our

main result assumes piecewise constant subspaces (needed for identifiability), but we also provide

a corollary for the case when there is a little change at each time. (2) Our second contribution

is a novel non-asymptotic guarantee for PCA in data-dependent noise that satisfies certain simple

assumptions. An important setting where these hold is for linearly data dependent noise that is

sparse with enough support changes over time. This problem occurs in the subspace update step of

our proposed robust ST solution. The PCA result is also of independent interest. As an example,

it is useful for analyzing PCA and subspace tracking with missing data [10].

Organization. We first summarize our notation and then provide a brief discussion of the

significance of our PCA guarantee and how it is used in analyzing our robust ST solution next. In

Sec. 3.2, we present the result for PCA in data-dependent noise and its corollary for the sparse data-

dependent noise case. In Sec. 3.3, we define the robust ST problem, state the assumptions required

to ensure its identifiability, develop the nearly (delay) optimal robust subspace tracker (NORST)

algorithm for solving it, and provide and discuss the correctness guarantee for it. Related work is

discussed in detail in Sec. 3.4. Two important extensions of our result are provided in Sec. 3.5.

We provide a proof of the correctness guarantee for NORST in Sec. 3.6. Empirical evaluation on

synthetic and real-world datasets is described in Sec. 3.7. We conclude and discuss future directions

in Sec. 3.8.

92

3.1.1 Notation

We use the interval notation [a, b] to refer to all integers between a and b, inclusive, and we

use [a, b) := [a, b − 1]. ‖.‖ denotes the l2 norm for vectors and induced l2 norm for matrices

unless specified otherwise, and ′ denotes transpose. We use MT to denote a sub-matrix of M

formed by its columns indexed by entries in the set T . In our algorithm statements, we use

L̂t;α := [ˆ̀t−α+1, ˆ̀
t−α+2, . . . , ˆ̀

t] and SV Dr[M] to refer to the matrix of top of r left singular vectors

of the matrix M . A matrix P with mutually orthonormal columns is referred to as a basis matrix;

it represents the subspace spanned by its columns. For basis matrices P1,P2, SE(P1,P2) :=

‖(I−P1P1
′)P2‖ quantifies the Subspace Error (distance) between their respective subspaces. This

is equal to the sine of the largest principal angle between the subspaces. If P1 and P2 are of the

same dimension, SE(P1,P2) = SE(P2,P1). We reuse the letters C, c to denote different numerical

constants in each use with the convention that C ≥ 1 and c < 1.

3.1.2 Significance and novelty of our PCA result and its use to analyze Robust Sub-

space Tracking

There is little existing work that explicitly studies PCA (solved via SVD) in the presence

of data-dependent noise (work that exploits knowledge of the data-dependency structure of the

noise)1. Our work provides a guarantee for one such setting; the setting is motivated by PCA

in sparse linearly data-dependent noise (PCA-SDDN). This problem occurs when studying the

SVD solution for solving (i) PCA with missing data, (ii) ST with missing data, and (iii) robust

ST (with outliers and with and without missing data). We briefly explain the technical novelty

of our result here. Let W denote the sparse linearly data-dependent noise matrix corrupting a

true low rank r data matrix L. We observe yt = `t + wt, t = 1, 2, . . . , α with `t = Pat, P is

an n × r matrix with orthonormal columns and r � n. Since wt is linearly data-dependent and

sparse, without loss of generality, we can express it as wt = ITtMs,t`t with Tt = support(wt)

1Of course any work on PCA for an approximately low rank matrix makes no assumptions on true data or noise
and thus does implicitly allow data-dependent noise as well. However, this type of work does not exploit knowledge
of how the noise depends on the data.

93

and Ms,t being the data-dependency matrix at time/column t. Let b denote the maximum of the

fraction of nonzero entries in any row of W . We compute the PCA estimate, P̂ , as the r-SVD of

Y := [y1,y2, . . . ,yα] = L + W .

(1) The sparsity of the noise along with a careful application of the Cauchy-Schwarz inequality

implies that ‖E[1
α

∑
twtwt

′]‖ ≤
√
bmaxt ‖E[wtwt

′]‖, i.e., the time-averaged noise power is at most
√
b times its maximum instantaneous value. Thus, if b is small enough (noise support changes

sufficiently across columns), the former is much smaller than the latter. (2) Since wt depends on

`t, this means that the data-noise correlation E[`twt
′] is not zero and, its time-averaged value,

‖E[1
α

∑
t `twt

′]‖, is in fact the dominant term in the perturbation ‖Y Y ′ − LL′‖ that governs the

subspace recovery error, SE(P̂ ,P). Again using Cauchy-Schwarz and sparsity of wt, we can show

that ‖E[1
α

∑
t `twt

′]‖ ≤
√
bmaxt ‖E[`twt

′]‖. Thus, even though signal-noise correlation is not zero

(and is, in fact, proportional to signal power), its time-averaged value is
√
b times smaller. Since

SE(P̂ ,P) / ‖Y Y ′−LL′‖
λr(LL′)

when the numerator is small enough (by Davis-Kahan sin θ theorem), the

above two facts imply that

SE(P̂ ,P) /
√
b
(2 maxt ‖Ms,tΣ‖+ maxt ‖Ms,tΣM ′

s,t‖)
λr(Σ)

≤
√
b(2q + q2)f

Here Σ := E[`t`
′
t]

EVD
= PΛP ′, q := maxt ‖Ms,tP ‖, and f denotes the condition number of Λ 2 q

can be understood as the noise-to-signal ratio and is thus a measure of the noise level. (3) Suppose

that the at’s are i.i.d. and bounded, i.e., ‖at‖2 ≤ µrλmax(Σ). Since the noise is data-dependent,

and since we assume that our data `t is generated from a low (r) dimensional subspace, we can

use the above facts and matrix-Bernstein [30] to show that SE(P̂ ,P) ≤ ε with high probability,

1− 3n−10, if the sample complexity α is Ω(q
2

ε2
κ2r log n). Thus, in order to achieve a recovery error

ε that is fraction of the noise level, q, the required sample complexity is near optimal (is within log

factors of r).

2If `t is not stationary, Σ := 1
α

∑
t E[`t`

′
t], in this case one needs to redefine f = maxt ‖E[`t`

′
t]‖/λr(Σ).

94

In the above discussion we have assumed zero uncorrelated noise, but our actual result also

handles that. This can model the fact that the true data is only approximately low rank. Moreover

it provides a guarantee for a more general setting than PCA-SDDN.

Use to analyze Robust ST. For solving the robust ST problem (recover `t and its subspace

from yt := `t+xt where xt denotes the sparse outlier at time t), we develop a mini-batch algorithm

that (a) processes the observed data to return an estimate of `t, ˆ̀
t, at each time t; and (b) uses

α-mini-batches of ˆ̀
t to compute a new estimate of the current subspace. This process is repeated

K times with K new α-length mini-batches for the current subspace; after this time, the algorithm

enters a “subspace change detect” phase. Denote the estimate from the k-th iteration by P̂k.

Suppose that the processing is such that (i) ˆ̀
t = `t + wt where wt is sparse and data-dependent

noise whose support equals the set of outlier entries at time t; and (ii) qk := maxt ‖Ms,tP ‖ is

proportional to the subspace recovery error from iteration k − 1, i.e., qk = C SE(P̂k−1,P) and

qk < 2. In defining qk, the max is taken over the mini-batch used in iteration k. We can use our

PCA result to show that SE(P̂k,P) /
√
b(2qk + q2

k)κ ≤ κ
√
b6qk and thus qk+1 = C SE(P̂k,P) /

6Cκ
√
bqk = 6Cκ

√
bSE(P̂k−1,P). Thus, if b is small enough, clearly, qk+1, and hence, SE(P̂k,P),

decreases by a constant fraction in each new iteration (the decay is geometric). Since the error in

recovering `t satisfies ‖ ˆ̀
t − `t‖/‖`t‖ ≤ qk, this also decays geometrically with each iteration.

3.2 PCA in Data-Dependent Noise

3.2.1 Problem Setting

For t = 1, 2, · · · , α we are given yt ∈ Rn that satisfies

yt := `t + wt + vt, where `t = Pat, wt = Mt`t, (3.1)

P is an n × r basis matrix with r � n; `t is the true data vectors that lies in an r-dimensional

subspace of Rn, span(P); at’s are the projections of `t’s onto this subspace; wt is data-dependent

noise with Mt being the data-dependency matrix at time t; and vt is uncorrelated noise. This

means that E[`tvt
′] = 0 for all times t. Here at and vt are treated as random variables (r.v.), while

95

everything else is deterministic. The goal is to estimate span(P) from the observed data stream

yt, t = 1, 2, . . . , α.

3.2.2 SVD solution and guarantee for it

SVD Solution. We compute the subspace estimate P̂ as the matrix of top r left singular

vectors of Y := [y1,y2, . . . ,yα]. Equivalently it is the matrix of top r eigenvectors of 1
α

∑
t ytyt

′.

We make the following assumptions on the subspace coefficients, at, and the uncorrelated noise,

vt.

Assumption 3.29 (Statistical Assumption on at). Assume that the at’s are zero mean; mutually

independent; have identical diagonal covariance matrix Λ, i.e., that E[atat
′] = Λ; and are bounded:

maxt ‖at‖2 ≤ µrλmax(Λ). Define λ+ := λmax(Λ), λ− := λmin(Λ), f := λ+

λ− .

As we explain in Sec. 3.3, this assumption is almost equivalent to assuming µ-incoherence of the

right singular vectors of the matrix L := [`1, `2, . . . , `α]. We call it µ statistical right incoherence

there.

Assumption 3.30 (Statistical Assumption on vt). Assume that vt is uncorrelated with `t, i.e.,

E[`tvt
′] = 0, and vt’s are zero-mean, independent and identically distributed (i.i.d.) with covariance

Σv := E[vtvt
′], and are bounded. Let λ+

v := ‖Σv‖ be the noise power and let rv :=
maxt ‖vt‖22

λ+
v

be the

effective noise dimension.

For a decomposition of the data-dependency matrix Mt as Mt = M2,tM1,t with ‖M2,t‖ = 1,

let

q := max
t
‖M1,tP ‖, and (3.2)

b :=

∥∥∥∥∥ 1

α

α∑
t=1

M2,tM2,t
′

∥∥∥∥∥ . (3.3)

Observe that b ≤ maxt ‖M2,t‖2 = 1. In many settings, for example, when wt is sparse with

changing support, b is much smaller than one. Our result given below exploits this fact.

96

Theorem 3.31 (PCA in Data-Dependent Noise). Consider the data yt defined by (3.1); and

assume that Assumptions 3.29 and 3.30 hold. Also assume that wt = Mt`t with the parameters

b, q satisfying b < 1, q < 2, and 4
√
bqf + λ+

v
λ− +H(α) +Hdenom(α) < 1. Here,

H(α) := C
√
ηqf

√
r log n

α
+ C
√
η

√
λ+
v

λ−
f

√
r log n

α
,

Hdenom(α) := C
√
ηf

√
r log n

α
. (3.4)

Then, with probability at least 1−10n−10, the matrix of top r eigenvectors of 1
α

∑
t ytyt

′, P̂ , satisfies

SE(P̂ ,P) ≤
4
√
bqf + λ+

v
λ− +H(α)

1− 4
√
bqf − λ+

v
λ− −H(α)−Hdenom(α)

Theorem 3.31 is proved in Appendix 3.10. It uses the Davis-Kahan sin Θ theorem [7] followed

by matrix Bernstein [30] to bound each term. To understand Theorem 3.31 simply, first assume

that vt = 0 and H(α), Hdenom(α) are small enough (α is large enough). From the definition of q,

the instantaneous signal-noise correlation ‖E[`twt
′]‖ ≤ qλ+ and the instantaneous data-dependent

noise power ‖E[wtwt
′]‖ ≤ q2λ+. Thus q2 is the data-dependent noise-to-signal ratio. Also, λ+ and

λ− quantify the maximum and the minimum signal power respectively. The PCA subspace recovery

error depends on the ratio between the sum of (time-averaged values of) signal-noise correlation

and noise power and the minimum signal space eigenvalue λ−. By Cauchy-Schwarz, it is not hard

to see that the time-averaged values of both these quantities satisfies ‖ 1
α

∑α
t=1 E[wtwt

′]‖ ≤
√
bq2λ+

and ‖ 1
α

∑α
t=1 E[`twt

′]‖ ≤
√
bqλ+. Thus, if b� 1, the time-averaged values are significantly smaller

than the instantaneous ones and this is what helps us get a small bound on the subspace recovery

error. For a constant c1 < 1, by assuming b < (c1/4f)2, we can ensure that SE(P̂ ,P) ≤ c1q, i.e.,

the subspace recovery error is a fraction of q.

In the general case when vt 6= 0, we can guarantee that SE(P̂ ,P) is at most c1 max(q, λ+
v /λ

−).

3.2.3 Application to PCA in Sparse Data-Dependent Noise (PCA-SDDN)

An important application of the above result is for data-dependent noise, wt, that is sparse.

In this work we will show how a guarantee for PCA in sparse data-dependent noise (PCA-SDDN)

97

helps obtain a fast and delay-optimal robust ST algorithm. If we set M2,t = ITt then wt is sparse

with support Tt. Thus for t = 1, 2, · · · , α

yt := `t + wt + vt, where `t = Pat, wt = ITtMs,t`t, (3.5)

The assumption on b is now equivalent to a bound on the maximum fraction of non-zero entries

in any row of W := [w1, · · · ,wα]. To see why this is true, notice that b = 1
α‖
∑α

t=1 ITtITt
′‖. The

matrix
∑

t ITtITt
′ is a diagonal matrix with (i, i)-th entry equal to the number of times t for which

i ∈ Tt. This is the same as the number of nonzero entries in the i-th row of W . Using this fact we

get the following corollary.

Corollary 3.32 (PCA in Sparse Data-Dependent Noise). Assume that yt’s satisfy (3.5), Assump-

tions 3.29, 3.30 hold, and q := maxt ‖Ms,tP ‖ ≤ 2. Let b denote the maximum fraction of nonzeros

in any row of the noise matrix [w1,w2, . . . ,wα], and let g := λ+
v
λ− . For an εSE > 0, if

4
√
bqf + g < 0.4εSE,

and if

α ≥ α∗ := C max

(
q2f2

ε2SE

r log n,
gf

ε2SE

max(rv, r) log n

)
,

then w.p. at least 1− 10n−10, SE(P̂ ,P) ≤ εSE.

This corollary follows from Theorem 3.31 by picking α large enough so that H(α) < εSE/10 and

Hdenom(α) < 1/10 (since this term appears in the denominator, we do not need it to be smaller

than εSE, just a constant upper bound suffices).

Corollary 3.32 shows that it is possible to achieve recovery error that is a fraction of q, i.e,

εSE = c1q, if (i) 4
√
bf ≤ 0.8c1 (the data-dependent noise support changes enough over time so

that b is small), (ii) λ+
v ≤ 0.8c1εSEλ

− (the uncorrelated noise power is small enough), and (iii)

α ≥ C max(f2r log n, f 1
εSE

max(rv, r) log n). Notice that the sample complexity α increases with

1/εSE = 1/(c1q). However, if we can make a stronger assumption that λ+
v ≤ 0.8c1ε

2
SEλ

−, then

we only need α ≥ C max(f2r log n, f max(rv, r) log n). Furthermore if rv ≤ Cr, then just α ≥

98

Cf2r log n suffices. Treating f as a numerical constant, observe that this sample complexity is

order-wise near-optimal: r is the minimum number of samples needed to even define a subspace.

In particular, in the setting when vt = 0, if the noise support changes enough so that b is

small enough, we can estimate the subspace to a fraction of the square root of the noise level, q,

using just order r log n samples. The reason this is possible is because the at’s are bounded and

wt = MtPat and so the “randomness” in wt is only r-dimensional (this has implications for what

matrix Bernstein returns for the required sample complexity). When vt 6= 0, we have a similar

result: if vt has effective dimension that is of order r, we can still track to εSE = cmax(q,
√
g), here

g is the square root of uncorrelated noise level.

3.2.4 Generalizations of Theorem 3.31

For notational simplicity, in Theorem 3.31, we have provided a simple result that suffices for

the correctness proof of our robust ST algorithm. We state and prove a much more general result in

Appendix that relaxes this result in three ways. First, it replaces the identically distributed assump-

tion on at and vt by the following: let Λ̄ :=
∑

t Λt/α, λ−avg := λmin(Λ̄), λ+
max := maxt λmax(Λt)

and λ+
v,max := maxt λmax(Σv,t). It requires that the distributions are “similar” enough so that

f := λ+
max/λ

−
avg is bounded by a numerical constant and λ+

v,max replaces λ+
v in H(α) and Hdenom(α)

expressions.

Secondly, it replaces λ+
v by ‖P ′ΣvP⊥‖ in the numerator, while −λ+

v in the denominator gets

replaced by −(λmax(Σv−PP ′ΣvPP ′)−λmin(P ′ΣvP)). Here again, in case of time-varying statis-

tics, the minimum eigenvalues get replaced by the minimum eigenvalue of the average covariance

matrix while the maximum ones get replaced by the maximum eigenvalue over all times t. Thirdly,

we also provide a guarantee for the case when at’s and vt’s are sub-Gaussian random vectors. In

this case, the required sample complexity increases to order n instead of max(r, rv) log n that we

have for the bounded case result given above.

These last two changes allow us to recover the well known result for PCA under the Gaussian

spiked covariance model (uncorrelated isotropic noise) [21] as a special case of our most general

99

result. Spiked covariance means wt = 0 and Σv = λ+
v I. Thus, q = 0, ‖P ′ΣvP⊥‖ = 0 and

‖Σv − P ′ΣvP ‖ − ‖P ′ΣvP ‖ = 0 and so we get the following corollary.

Corollary 3.33 (Spiked Covariance Model, Gaussian noise [21]). In the setting of Theorem 3.31,

if wt = 0 (no data-dependent noise), Σv = λ+
v I, and at, vt are Gaussian, then, w.p. at least

1−5 exp(−cn), SE(P̂ ,P) ≤ H(α)
1−H(α)−Hdenom(α) . with H(α) = C

√
η
√
gf
√

n
α , Hdenom(α) = C

√
ηf
√

n
α

and g = λ+
v
λ− .

If at, vt are bounded then H(α), Hdenom(α) are as given in Theorem 3.31.

Notice that, under the spiked covariance model, as long as we let the sample complexity α grow

with the noise level g, we do not need any bound on noise power. For example, the noise power

λ+
v could even be larger than λ−. This is possible because, under this model, E[

∑
t yty

′
t/α] =

PΛP ′ + λ+
v I. Thus, its matrix of top r eigenvectors equals P . As a result, the error between P̂

and P is only due to the fact that we are using a finite α to approximate the expected value. In

other words, we only have statistical error. The “bias” terms are zero.

3.3 Nearly Optimal Robust Subspace Tracking (NORST)

In this section, we define the robust ST problem, explain the assumptions needed to make it

identifiable, and then explain our proposed mini-batch solution and its guarantee.

3.3.1 Problem setting and algorithm design constraints

At each time t, we observe a data vector yt ∈ Rn that satisfies

yt := `t + xt + vt, for t = 1, 2, . . . , d (3.6)

where vt is small unstructured noise, xt is the sparse outlier vector, and `t is the true data vector

that lies in a fixed or slowly changing low-dimensional subspace of Rn, i.e.,

`t = P(t)at

where P(t) is an n×r basis matrix with r � n and with ‖(I−P(t−1)P(t−1)
′)P(t)‖ small compared to

‖P(t)‖ = 1. We use Tt to denote the support set of xt. As an example, in the video application, yt is

100

the video image at time/frame t, `t is the background at time t, Tt is the support of the foreground

at t, and xt equals the difference between foreground and background images on Tt while being

zero everywhere else. Slow subspace change is typically a valid assumption for background images

of videos taken using a static camera. Given a good initial subspace estimate, P̂0, the goal is

to develop a mini-batch algorithm to track span(P(t)) and `t either immediately or within a short

delay. A by-product is that xt, and Tt can also be tracked accurately. The initial subspace estimate,

P̂0, can be computed by applying a few iterations of any existing RPCA solutions, e.g., PCP [3] or

AltProj [25], on the first order r data points, i.e., on Y[1,ttrain], with ttrain = Cr.

Dynamic RPCA. This is the offline version of the above problem. Define matrices L,X,V ,Y

with L = [`1, `2, . . . `d] and with Y ,X,V similarly defined. The goal is to recover L and its column

space with accuracy ε. We use rL to denote the rank of L. The maximum fraction of nonzeros in

any row (column) of the outlier matrix X is denoted by max-outlier-frac-row (max-outlier-frac-col).

Algorithm constraints. We will develop a nearly real-time tracking algorithm that (i)

computes an online estimate of xt and its support Tt, and of `t immediately at each time t using

the previous subspace estimate, P̂(t−1), and observed data yt; (ii) it updates the subspace estimates

in a mini-batch fashion; and (iii) it provides improved smoothing estimates of all quantities after a

delay that is within log factors of r. As we explain in Sec. 3.3.5, recovering xt, Tt, and `t one at a

time is the only way to obtain improved row-wise outlier tolerance compared to standard RPCA.

However with doing this, correct recovery requires one extra assumption: slow enough subspace

change compared to the minimum outlier magnitude.

3.3.2 Nearly Optimal Robust ST (NORST) via Recursive Projected Compressive

Sensing (CS): main idea

The algorithm begins with an initial subspace estimate P̂0. At each time t, we use P̂(t−1) and

yt to solve a noisy projected compressive sensing (CS) problem to estimate xt and its support Tt

from ỹt = Ψxt + bt. Here Ψ = I − P̂(t−1)P̂(t−1)
′, ỹt = Ψyt, and bt = Ψ`t + Ψvt (is small under

the slow subspace change assumption). This step uses l1 minimization followed by thresholding to

101

estimate Tt, and Least Squares (LS) on T̂t to get x̂t. We compute ˆ̀
t by subtraction as ˆ̀

t = yt− x̂t.

Every α time instants, we update the subspace estimate by solving the PCA problem using the

previous α ˆ̀
t’s as observed data, i.e., by r-SVD on L̂t;α. This is repeated K times, each time with

a new set of α ˆ̀
t’s. At this point, the algorithm enters the subspace change detect phase. The

complete algorithm is specified in Algorithm 6, and explained in detail in Sec 3.3.7. Besides α and

K, it has two other parameters: ξ (assumed upper bound on ‖bt‖) and ωsupp (threshold used for

support recovery).

3.3.3 Identifiability and other assumptions

For this discussion assume that vt = 0. At each time t we have just one n-length observed

data vector yt but the subspace Pt is specified by nr scalars (it is an r-dimensional subspace of

Rn). Thus, even if we had perfect data yt = `t available, it would be impossible to estimate each

different Pt. One way to address this is by assuming that the Pt’s do not change for at least r time

instants.

Assumption 3.34 (Piecewise Constant Subspace Change). Let t1, . . . tj , . . . tJ denote the subspace

change times. Let t0 = 1 and tJ+1 = d. Assume that

P(t) = Pj for all t ∈ [tj , tj+1), j = 1, 2, . . . , J,

with tj+1− tj > r. Since yt = `t +xt (is imperfect), our guarantee needs a larger lower bound than

r.

Even with the above assumption, a sparse xt and its support Tt cannot be correctly distinguished

from `t = Pjat without more assumptions. Correct recovery of xt and Tt requires that (i) the xt’s

are sparse enough (ensured by bounding the maximum allowed outlier fractions per column), (ii)

the columns of Pj are not sparse (ensured by the standard incoherence/denseness assumption from

the RPCA literature [4, 3, 25]), and (iii) the at’s are bounded. (iv) Correct support recovery

also requires subspace change that is slow enough compared to the minimum nonzero entry of xt

(minimum outlier magnitude), denoted xmin. Correct subspace update requires that (v) the r × α

102

sub-matrices formed by a mini-batch of at’s are well-conditioned, and (vi) the outlier support Tt

changes enough over time so that there is at least one outlier-free observation of each scalar entry

of `t in each mini-batch of yt’s. One way to ensure (v) is to assume that the at’s are i.i.d. while

(vi) can be ensured by bounding the maximum fraction of outliers in any row of any α-mini-batch

sub-matrix of X. We use max-outlier-frac-row(α) to denote this quantity. We summarize the above

assumptions on Pj ’s and at’s in Assumption 3.35, those on the outlier fractions in Assumption 3.36,

and slow subspace change compared to xmin in Assumption 3.37.

Assumption 3.35 (µ-Incoherence). Assume the following.

1. (Left Incoherence) Assume that Pj’s are µ-incoherent with µ being a numerical constant. This

means that maxi=1,2,..,n ‖(Pj)(i)‖2 ≤ µr/n. Here P (i) denotes the i-th row of P .

2. (Statistical Right Incoherence) Assume Assumption 3.29, i.e., the subspace coefficients at are

zero mean, mutually independent, have identical diagonal covariance matrix Λ := E[ata
′
t],

and are bounded: maxt ‖at‖2 ≤ µrλmax(Λ). Let λ+ (λ−), f := λ+/λ− denote the maximum

(minimum) eigenvalue and condition number of Λ.

The second assumption above allows us to obtain high probability upper bounds on the tracking

delay of our approach. As we explain later in Sec. 3.3.6, it can be interpreted as a statistical version

of right singular vectors’ incoherence. The incoherence assumption on Pj is nearly equivalent to

left singular vectors’ incoherence. It is exactly equivalent if we consider the sub-matrices Lj :=

[`tj , `tj+1, . . . , `tj+1−1].

Assumption 3.36 (Outliers are spread out). Let max-outlier-frac-col := maxt |Tt|/n; let

max-outlier-frac-row(α) be the maximum fraction of nonzeros per row of any sub-matrix of

X[ttrain,d] with α consecutive columns, and let max-outlier-frac-rowinit be the maximum fraction

of outliers per row of any sub-matrix of X[1,ttrain]. Assume that max-outlier-frac-col ≤ c1
µr ,

max-outlier-frac-row(α) ≤ c2
f2 , and max-outlier-frac-rowinit ≤ c3

r .

Assumption 3.37 (Slow subspace change). Let xmin := mint mini∈Tt |(xt)i| and let SEj :=

SE(Pj−1,Pj). Assume that SEj ≤ 0.8 and SEj ≤ c4√
r
xmin√
λ+

.

103

The order notation used here and below assumes that f, µ are constants.

3.3.4 Guarantees

Before stating our main result, we define a few terms next.

Definition 3.38. Let the mini-batch size α := Cf2r log n, the number of subspace update iterations

needed to get an ε accurate estimate, K = K(ε) := C log(∆/ε), where ∆ := maxj SEj, noise power

λ+
v := maxt ‖E[vtvt

′]‖, and effective noise dimension, rv := maxt ‖vt‖2
λ+
v

. Recall from Algorithm 6

that t̂j denotes the time at which the j-th subspace change is detected.

We have the following result.

Theorem 3.39. Assume that Assumptions 3.34, 3.35, 3.36, and 3.37 hold. Assume that the noise

vt is bounded, i.i.d. over time, independent of Tt, uncorrelated with `t, i.e., E[`tvt
′] = 0, and with

rv ≤ Cr, and
√
λ+
v /λ− < 0.01. Also, assume that `t’s and Tt’s are independent.

Pick an ε that satisfies c
√
λ+
v /λ− ≤ ε ≤ min

(
c3

1√
r
xmin√
λ+
, 0.01

)
. Consider Algorithm 6 with

K = K(ε) as defined above, α = Cf2r log n, ωevals = 2ε2λ+, ζ = xmin/15 and ωsupp = xmin/2. If

1. maxt ‖vt‖ ≤ c5xmin,

2. tj+1 − tj > (K + 2)α, and SEj > 9
√
fε

3. initialization3: SE(P̂0,P0) ≤ min
(
c6

1√
r
xmin√
λ+
, 0.25

)
;

then, w.p. at least 1− 10dn−10,

1. tj ≤ t̂j ≤ tj + 2α,

SE(P̂(t),P(t)) ≤
(ε+ SEj) if t ∈ [tj , t̂j + α),

(0.3)k−1(ε+ SEj) if t ∈ [t̂j + (k − 1)α, t̂j + kα),

ε if t ∈ [t̂j +Kα+ α, tj+1),

and ‖ ˆ̀
t − `t‖ ≤ 1.2SE(P̂(t),P(t))‖`t‖+ ‖vt‖;

3This can be satisfied by using C log r iterations of AltProj [25] on the first ttrain = Cr data samples.

104

2. T̂t = Tt and the bound on ‖x̂t − xt‖ is the same as that on ‖ ˆ̀
t − `t‖.

The time complexity is O(ndr log(1/ε)) and memory complexity is O(nα) = O(f2nr log n).

Proof. We prove this in Sec. 3.6.

We have the following corollary for the smoothing NORST algorithm (last few lines of Algorithm

6). This is also a mini-batch approach with mini-batch size (K + 2)α (instead of α for NORST).

Corollary 3.40. [Smoothing NORST for dynamic RPCA] Under the assumptions of Theorem 3.39,

the following also hold: SE(P̂ smoothing
(t) ,P(t)) ≤ ε, ‖ ˆ̀smoothing

t − `t‖ ≤ ε‖`t‖+ ‖vt‖ at all times t. Its

time complexity is O(ndr log(1/ε)) and memory complexity is O(Knα) = O(nr log n log(1/ε)). All

these quantities are computed within a delay of at most (K + 2)α.

The above result guarantees that NORST can detect subspace changes in delay at most α =

Cr log n and track them to ε accuracy in delay at most (K+2)α = Cr log n log(∆/ε). The corollary

for smoothing NORST guarantees that, with this delay, each column of L, `t, is recovered to ε

relative accuracy. The minimum delay needed to compute an r-dimensional subspace even with

perfect data yt = `t is r. Thus, our result guarantees near optimal detection and tracking delay

(“near optimal” means that it is within log factors of the minimum delay). Moreover, the required

lower bound on the delay between subspace change times is also near optimal. Quick and reliable

change detection is an important feature, e.g., this feature has been used in [26] to detect structural

changes in a dynamic social network.

When the extra unstructured noise vt = 0, we can track to any ε > 0 otherwise we can track

to ε ≥
√
λ+
v /λ− (square root of the noise level). It is possible to slightly relax this requirement to

ε ≥ λ+
v /λ

− by picking a larger α, α = C(r log n)(λ−/λ+
v), but it cannot be eliminated. The reason

is that at each time t, we have an under-determined set of equations corrupted by unstructured noise

vt. Even assuming the subspace is known or has been perfectly estimated, it is under-determined:

we have n+ r unknowns at each time t but only n observed scalars. This is also true for any other

under-determined problem as well, e.g., standard RPCA or CS4.

4To address a reviewer comment, one cannot get a consistent estimator for our problem, nor for standard RPCA or
CS. Consistent estimator means that the recovery error goes to zero as the number of observed data points increases.

105

Notice also that we have assumed that the “effective noise dimension”, rv ∈ O(r). This require-

ment can be eliminated if we set α = Cf2 max(r, rv) log n.

From the perspective of recovering the true data `t, both vt and xt are noise or perturbations.

The difference is that vt is a vector of small disturbances or modeling errors, while xt is a sparse

outlier vector with few nonzero entries. By definition, an outlier is an infrequent but large distur-

bance. Our result tolerates what can be called “bi-level perturbations”: the small perturbation vt

needs to be small enough and the minimum outlier magnitude xmin needs to be large enough so

that ‖vt‖ ≤ 0.2xmin (minimum outlier magnitude). Moreover, xmin also needs to be large enough to

satisfy Assumption 3.37. The need for both these assumptions is explained in Sec. 3.3.5. Assuming

that x2
min is of order λ+ (signal power), Assumption 3.37 requires that SEj be O(1/

√
r). However

this is not as restrictive as it may seem. The reason is that SE(.) is only measuring the sine of the

largest principal angle. If all principal angles are roughly equal, then, this still allows the chordal

subspace distance (l2 norm of the vector of sines of all r principal angles) [37] to be O(1).

Our result assumes a minor lower bound on SEj . This is needed to guarantee reliable subspace

change detection. Changes that are smaller than order ε cannot be detected when the previous

subspace is only tracked to accuracy ε. However, such changes also increase the tracking error only

by an extra factor of ε and hence can be treated as noise. If change detection is not important,

then, as we explain in Sec. 3.5, we can use a simpler NORST algorithm that does not need the

lower bound.

Consider the piecewise constant subspace change assumption. In practice, e.g., in the video

application, typically the subspaces change by a little at each time. This can be modeled as

piecewise constant subspaces plus modeling error vt. We explain this point in Sec. 3.5 where we

also provide a corollary for this setting. This corollary explains why the NORST algorithm “works”

(gives good, but not perfect, subspace estimates and estimates of `t) for real videos or for simulated

For example for Least Squares estimation, one can show the estimator is consistent. But this is true because number
of observed data points increases while the number of unknowns remains constant. In our case, the number of
unknowns also increases with time t: at each t, we have (n+ r) unknowns even if Pt has been estimated.

106

data generated so that Pt changes a little at each t; see Sec. 3.7 and more detailed experiments in

[32].

To keep the theorem statement simple, we have used tighter bounds than required. Define

the intervals Jj,1 = [tj , t̂j + α), Jj,k := [t̂j + (k − 1)α, t̂j + kα) for k = 2, 3, . . . ,K, and Jj,K+1 =

[t̂j + (K + 1)α, tj+1). For t ∈ Jj,k, for k = 1, 2, . . . ,K, we only need 0.3k−1(ε + SEj)
√
rλ+ ≤

cmini∈Tt |(xt)i|, i.e., the required lower bound on the minimum outlier magnitude at time t decreases

as the subspaces get estimated better. For the outliers xt for t ∈ Jj,K+1, we do not require any

lower bound. Secondly, if the outlier vector is such that some entries are very small while the

others are large enough, then we can treat the smaller entries as “noise” vt. This will work

as long as these small entries are small enough so that the sum of their squares is sufficiently

smaller than the square of the magnitude of the larger entries, i.e., for t ∈ Jj,k, we can split xt

as xt = (xt)small + (xt)large with the two components being such that cxt,large,min ≥ ‖(xt)small‖

and cxt,large,min ≥ 0.3k−1(ε + maxj SEj)
√
rλ+. Finally, if we also state the PCA-SDDN result in

its most general form, the subspace error decay rate of 0.3 can be replaced by (6
√
b0f) with b0 :=

max-outlier-frac-row, so this requirement becomes cxt,large,min ≥ (6
√
b0f)k−1(ε+ maxj SEj)

√
rλ+.

With this change, the expression for K becomes K =
⌈

log(∆/ε)

− log(6
√
b0f)

⌉
. Thus, a smaller b0 means that

the subspace error decays faster. This, in turn, means that a smaller K suffices (faster tracking

and a smaller required lower bound on tj+1 − tj). It also means a smaller lower bound is needed

on the outlier magnitudes at most times.

3.3.5 How slow subspace change (Assumption 3.37) enables improved outlier toler-

ance

We explain here how the use of Assumption 3.37 enables improved outlier tolerance. Briefly, the

reason is we recover each outlier xt and its support Tt individually. To understand things simply,

assume vt = 0.

Given a good previous subspace estimate, P̂(t−1), slow subspace change implies that

SE(P̂(t−1),Pt) is small. Consider an α length interval J during with P̂(t−1) = P̂ (computed

107

in the previous α interval). To exploit slow subspace change, we project each yt orthogonal to P̂

to get ỹt := Ψxt + bt where bt := Ψ`t is small because of above. Here Ψ := I − P̂ P̂ ′. Now

bt itself does not have any structure. But, the matrix BJ formed by the bt’s for t ∈ J , is low

rank with rank r 5. Accurately recovering XJ from ỸJ := ΨXJ + BJ when BJ has rank r is

impossible if the fraction of outliers in any row or in any column of XJ is more than c/r. The

reasoning is the same as that used for standard RPCA [25]: we can construct a sparse matrix XJ

with rank 1/max(max-outlier-frac-row,max-outlier-frac-col). Thus if max-outlier-frac-row = c, we

can construct a sparse XJ with rank 1/c = C � r 6. If the rank of XJ is less than r, that of ΨXJ

will also be less than r, making the recovery problem un-identifiable: if we try to find a matrix B̂J

of rank at most r and a matrix X̂J that is the sparsest and both satisfy ỸJ := ΨX̂J + B̂J , it is

possible that we get the solution B̂J = BJ + ΨX̂J and X̂J = 0. Because rank of ΨX̂J is less

than r and that of BJ is r, it is possible that the sum still has rank r.

Thus, if we would like to improve row-wise outlier tolerance to O(1), we cannot jointly recover

all columns of XJ by exploiting the low rank structure of BJ . The only other way to proceed

is as we do: recover them one xt at a time from ỹt. Here we can only use the fact that ‖bt‖ is

small due to slow subspace change. The problem of recovering a single xt from ỹt is a standard

noisy CS problem [2], with small noise bt. To our best knowledge, there are no entry-wise recovery

guarantees for CS. One can only bound ‖x̂t,cs − xt‖ by a constant (that depends on the restricted

isometry constant of Ψ), C, times ‖bt‖. Here x̂t,cs is the output of the CS step (line 7 of Algorithm

6). With this, correct support recovery, T̂t = Tt, is ensured only if xmin > 2C‖bt‖. The worst case

bound on ‖bt‖ comes from when the subspace has changed but the change has not been detected

so that P̂(t−1) = P̂j−1 and Pt = Pj . At this time, ‖bt‖ ≤ maxj SE(P̂j−1,Pj)
√
r
√
λ+. Also, we can

show that SE(P̂j−1,Pj) ≤ SEj + ε. Thus, exact support recovery is guaranteed if Assumption 3.37

5The effective (stable) rank, of BJ will be less than r only if we assume more structure on subspace change, e.g.,
if we assume that only a few subspace directions change. Its exact rank will still be r.

6A simple way to do this would be as follows. Let b0 = max-outlier-frac-row and suppose b0 is a constant (is more
than order 1/r). Let the support and nonzero entries of XJ be constant for the first b0α columns; after this, move
the nonzero entries down in such a way that there is no overlap of supports; and repeat this every b0α columns. With
this, the max-outlier-frac-row = b0 and the rank of XJ is α/(b0α) = 1/b0 since there are only 1/b0 unique vectors in
this matrix construction.

108

holds and ε is chosen as specified in the theorem. When vt 6= 0, the bound on ‖bt‖ contains a ‖vt‖

term. In this case, exact support recovery also needs ‖vt‖ ≤ c5xmin.

Exact support recovery followed by LS on the recovered support and then subtraction to get ˆ̀
t

implies that ˆ̀
t satisfies ˆ̀

t = `t + et with et := −ITt (ITt
′ΨITt)

−1ITtΨ︸ ︷︷ ︸
Ms,t

`t. Notice that et is sparse

and linearly data-dependent and, conditioned on P̂ and the support sets Tt, the matrix Ms,t is

deterministic. So we can apply the PCA-SDDN result from the previous section. It also needs

statistical right incoherence, q := maxt ‖Ms,tPj‖ ≤ CSE(P̂ ,Pj) (holds by left incoherence and

max-outlier-frac-col < c/r), and max-outlier-frac-row(α) ≤ c (constant row-wise outlier fraction

bound). If the support recovery were incorrect, the estimated support T̂t would depend on bt and

hence on `t. This would mean that, even conditioned on P̂ and Tt, the matrices Ms,t are not

deterministic making the PCA-SDDN result inapplicable.

3.3.6 Understanding Statistical Right Incoherence

Let Lj := L[tj ,tj+1). From our assumptions, Lj = PjAj with Aj := [atj ,atj+1, . . .atj+1−1], the

columns of Aj are zero mean, mutually independent, have identical covariance Λ, Λ is diagonal,

and bounded. Let dj := tj+1 − tj . Define a diagonal matrix Σ with (i, i)-th entry σi satisfying

σ2
i :=

∑
t(at)

2
i /dj . Define a dj × r matrix Ṽ with the t-th entry of the i-th column being (ṽi)t :=

(at)i/(σi
√
dj). Clearly, Lj = PjΣṼ ′ and each column of Ṽ is unit 2-norm. This can be interpreted

as an approximation to the SVD of Lj ; we say approximation because the columns of Ṽ are not

necessarily exactly mutually orthogonal. However, if dj is large enough, one can argue using scalar

Hoeffding inequality (applicable because at’s are bounded), that, whp, (i) the columns of Ṽ are

approximately mutually orthogonal, i.e. |ṽ′iṽj | ≤ ε for all i 6= j; and (ii) 0.99λi ≤ σ2
i ≤ 1.01λi

for all i = 1, 2, . . . , r. Thus, by the boundedness assumption on the at’s, the t-th row of Ṽ

satisfies
∑r

i=1(ṽi)
2
t ≤ (1/dj)(1/mini σ

2
i)‖at‖2 ≤ (1/dj)(1/λ

−)µrλ+ = fµr/dj . This is the standard

incoherence assumption with parameter fµ. Thus, whp, the approximate right singular vectors’

matrix Ṽ of Lj satisfies the standard incoherence assumption.

109

3.3.7 Nearly Optimal Robust ST via ReProCS (NORST-ReProCS): details

Algorithm 6 uses the Recursive Projected Compressive Sensing framework introduced in [28].

It starts with a “good” estimate of the initial subspace. This can be obtained by using a few

iterations of AltProj applied to Y[1,ttrain] with ttrain = Cr. It then iterates between (a) Projected

Compressive Sensing (CS) / Robust Regression7 in order to estimate the sparse outliers, xt’s, and

hence the `t’s, and (b) Subspace Update to update the estimates P̂(t). Projected CS proceeds as

follows. At time t, if the previous subspace estimate, P̂(t−1), is accurate enough, because of slow

subspace change, projecting yt onto its orthogonal complement will nullify most of `t. We compute

ỹt := Ψyt where Ψ := I − P̂(t−1)P̂(t−1)
′. Clearly ỹt = Ψxt + Ψ(`t + vt) and ‖Ψ(`t + vt)‖ is small

due to slow subspace change and small vt. Recovering xt from ỹt is now a CS / sparse recovery

problem in small noise [2]. We compute x̂t,cs using noisy l1 minimization followed by thresholding

based support estimation to obtain T̂t. A Least Squares (LS) based debiasing step on T̂t returns

the final x̂t. We then estimate `t as ˆ̀
t = yt − x̂t.

The ˆ̀
t’s are then used for the Subspace Update step which toggles between the “detect” phase

and the “update” phase. It starts in the “update” phase with t̂0 = ttrain. We then perform K

r-SVD steps with the k-th one done at t = t̂0 + kα − 1. Each such step uses the last α estimates,

i.e., uses L̂t;α. Thus at t = t̂0 + Kα − 1, the subspace update of P0 is complete. At this point,

the algorithm enters the “detect” phase. For any j, if the j-th subspace change is detected at time

t, we set t̂j = t. At this time, the algorithm enters the “update” (subspace update) phase. We

then perform K r-SVD steps with the k-th r-SVD step done at t = t̂j + kα− 1 on L̂t;α. Thus, at

t = t̂j,fin = t̂j +Kα−1, the update is complete. At this t, the algorithm enters the “detect” phase.

To understand the change detection strategy, consider the j-th subspace change. Assume

that the previous subspace Pj−1 has been accurately estimated by t = t̂j−1,fin = t̂j−1 + Kα − 1

and that t̂j−1,fin < tj . Let P̂j−1 denote this estimate. At this time, the algorithm enters the

7Robust Regression (with a sparsity model on the outliers) assumes that observed data vector y satisfies y =
P̂ a+x+ b where P̂ is a tall matrix (given), a is the vector of (unknown) regression coefficients, x is the (unknown)
sparse outliers, b is (unknown) small noise/modeling error. An obvious way to solve this is by solving mina,x λ‖x‖1 +
‖y− P̂ a−x‖2. In this, one can solve for a in closed form to get â = P̂ ′(y−x). Substituting this, the minimization
simplifies to minx λ‖x‖1 + ‖(I − P̂ P̂ ′)(y − x)‖2. This is equivalent to the Lagrangian version of the projected CS
problem that NORST solves (given in line 7 of Algorithm 6).

110

“detect” phase in order to detect the next (j-th) change. Let Bt := (I − P̂j−1P̂j−1
′)L̂t;α. At

every t = t̂j−1,fin + uα − 1, u = 1, 2, . . . , we detect change by checking if the maximum singular

value of Bt is above a pre-set threshold,
√
ωevalsα, or not. We claim that, with high probability

(whp), under assumptions of Theorem 3.39, this strategy has no “false subspace detections” and

correctly detects change within a delay of at most 2α samples. The former is true because, for

any t for which [t − α + 1, t] ⊆ [t̂j−1,fin, tj), all singular values of the matrix Bt will be close to

zero (will be of order ε
√
λ+) and hence its maximum singular value will be below

√
ωevalsα. Thus,

whp, t̂j ≥ tj . To understand why the change is correctly detected within 2α samples, first consider

t = t̂j−1,fin + d tj−t̂j−1,fin

α eα := tj,∗. Since we assumed that t̂j−1,fin < tj (the previous subspace

update is complete before the next change), tj lies in the interval [tj,∗ − α + 1, tj,∗]. Thus, not

all of the `t’s in this interval satisfy `t = Pjat. Depending on where in the interval tj lies, the

algorithm may or may not detect the change at this time. However, in the next interval, i.e., for

t ∈ [tj,∗ + 1, tj,∗ + α], all of the `t’s satisfy `t = Pjat. We can prove that, whp, Bt for this time t

will have maximum singular value that is above the threshold. Thus, if the change is not detected

at tj,∗, whp, it will get detected at tj,∗ + α. Hence, whp, either t̂j = tj,∗, or t̂j = tj,∗ + α, i.e.,

tj ≤ t̂j ≤ tj + 2α.

Algorithm parameters. Algorithm 6 assumes knowledge of 4 model parameters: r, λ+,

λ− and xmin to set the algorithm parameters. The initial dataset used for estimating P̂0 (using

AltProj) can be used to get an accurate estimate of r, λ− and λ+ using standard techniques. Thus

one really only needs to set xmin. If continuity over time is assumed, we can let it be time-varying

and set it as mini∈T̂t−1
|(x̂t−1)i| at t.

Time complexity. The time complexity is O(ndr log(1/ε)). We explain this in Supplement

Appendix 3.12.1.

3.4 Related Work

We first briefly discuss related work on PCA and then discuss robust PCA and subspace tracking

papers. While there has been a large amount of work in the last decade on finite-sample guarantees

111

for PCA [21, 17] and related problems, such as sparse PCA [35, 1] and kernel PCA [29, 43] most of

these assume either the spiked covariance model (noise is modeled as being isotropic) [21, 43] or that

the observed data yt is i.i.d. [21, 17] or consider noiseless settings [35, 1] (typical in sparse PCA).

The setting that we study involves linearly data dependent noise wt = Mt`t with the dependency

matrix Mt being time-varying. Thus, the noise is clearly not isotropic. Moreover, this also means

that the observed data yt = `t + wt + vt cannot be identically distributed over time. In fact,

our guarantee is interesting only in the setting where Mt changes enough over time so that the

time-averaged expected value of signal-noise correlation and of noise power is sufficiently smaller

than their respective instantaneous values.

We should mention also that, while many sophisticated eigenvector perturbation bounds exist

in the literature [16, 18, 14], these are designed for different settings than the one we are interested

in. For our setting, only the classical Davis-Kahan sin theta theorem [7] applies. In our analysis,

we need to bound the sine of the largest principal angle between the true and estimated subspaces,

because this helps us get a bound on the “noise”/error seen by the projected compressed sensing

step at the next time instant. Thus, [16], which only provides coordinate-wise bounds, cannot be

used. The perturbation seen by our sample covariance matrix is additive and our observed data yt

is not identically distributed, and thus the results of [18, 14] do not apply either.

The robust PCA (RPCA) problem has been extensively studied since the first two papers by

Candes et al and Chandrasekharan at al [3, 5] and follow-up work by Hsu et al [13] all of which

studied a convex optimization solution, called Principal Components Pursuit or PCP. A faster

non-convex solution, called Alternating Projections or AltProj, was introduced in [25]. Later work

has studied a projected gradient descent based approach, RPCA-GD [38]. The problem of RPCA

with partial support knowledge was studied in [40]. All RPCA guarantees assume µ-incoherence

of left and right singular vectors of L (needed to ensure that L is not sparse). One way to ensure

that X is not low rank is to assume that an entry of X is nonzero with probability ρ independent

of all others (Bernoulli model) and to assume a bound on ρ. This was assumed in [3]. This can

sometimes be a strong assumption, e.g., in the video setting, it requires that foreground objects are

112

one pixel wide and jump around completely randomly over time. But, if it holds, and if another

stronger left-right incoherence assumption holds8, then ρ ∈ O(1) (linear sparsity) can be tolerated

while also allowing the rank of L, rL to be grow nearly linearly with min(n, d) [3]. The other

approach to ensure that X is low rank is to assume a bound of O(1/rL) on the maximum fraction

of nonzeros (outliers) in any row or in any column of X. This is assumed in most of the later works

[5, 13, 25, 38, 6].

Our work provides a fast mini-batch solution to the related problem of robust subspace tracking

(RPCA with explicitly assuming slowly changing subspaces). Because we replace right incoherence

by its statistical version, we are able to obtain guarantees on detection and tracking delay of our

approach and show that both are nearly optimal (are within log factors of the minimum required

delay r). This also means that the memory complexity of NORST is also near optimal: we only

need to store α n-length vectors in memory with α = Cr log n. Of course, any RPCA approach

could also be applied in a mini-batch fashion on α-consecutive column sub-matrices, and then it

will also have the same memory complexity. We assume this here in our discussion. With this

assumption, max-outlier-frac-row gets replaced by max-outlier-frac-row(α) and rL gets replaced by

r for the RPCA guarantees as well.

Because we assume a lower bound on the minimum outlier magnitudes that is pro-

portional to SEj , we obtain the following improvement in outlier tolerance (explained in

Sec. 3.3.5). Treating f as a constant, for any mini-batch after ttrain, we only need

max-outlier-frac-row(α) ∈ O(1). For standard RPCA, unless a random model on outlier support is

assumed, max(max-outlier-frac-col,max-outlier-frac-row(α)) ∈ O(1/r) is needed [25]. For the video

application, this implies that NORST tolerates slow moving and occasionally static foreground ob-

jects much better than standard RPCA methods that do not assume slow subspace change. This

is also corroborated by our experiments on real videos, e.g., see Fig 3.4 in Sec. 3.7 and also see

a more detailed and quantitative evaluation on real data provided in [32]. Since our algorithm

needs to be initialized with a standard batch RPCA approach such as AltProj [25] applied to the

8maxi,j |UV ′)i,j | ≤
√

µr
nd

where U ,V are the matrices of left and right singular vectors of L

113

first ttrain = Cr data points, for this initial short batch, we do need AltProj assumptions to hold

and this is why we need max-outlier-frac-rowinit ≤ c3
r . For the per column fraction, we also need

max-outlier-frac-col ∈ O(1/r). Thus, the overall fraction of outliers allowed in a given matrix is

still O(1/r), which is the same as standard RPCA, but these can be less spread out row-wise (some

rows could have many more outliers than others).

Moreover, we are able to guarantee that each column of L, `t, is recovered to ε relative accuracy

and that the support of outliers can be recovered exactly. Neither is guaranteed by existing RPCA

results, these only guarantee ‖L̂−L‖F ≤ ε.

Finally, in terms of time complexity, the NORST complexity of O(nαr log(1/ε)) per mini-batch

is comparable to that of simple (non-robust) PCA. In comparison to RPCA solutions, this is much

faster than PCP [3, 5, 13] which needs O(nα2 1
ε) and r-times faster than AltProj [25] which needs

O(nαr2 log(1/ε)). RPCA-GD [38] is as fast as NORST but requires an even tighter outlier fractions’

bound than other RPCA solutions: max(max-outlier-frac-row,max-outlier-frac-col) ∈ O(1/r3/2).

Our work builds upon the simple-ReProCS (s-ReProCS) solution and guarantee [24] and re-

moves many of its limitations. S-ReProCS assumes a specific model of slow subspace change: only

one subspace direction can change at each change time, and the amount of change needs to be

bounded. Even with this assumption, its tracking delay is of order r log n log(1/ε). Since only one

direction is changing, this delay is r-times sub-optimal. The same is true for its required lower

bound on subspace change times. A second limitation of s-ReProCS is that, in order to track

subspaces to ε accuracy, it requires the initial subspace estimate to also be ε accurate. This, in

turn, implies that one needs to run the AltProj or PCP algorithm on the initial mini-batch to con-

vergence. Instead, our approach only requires the initial subspace error to be O(1/
√
r). Thus, only

order log r iterations of AltProj suffice to initialize our algorithm. Thirdly, the s-ReProCS guar-

antee needs a stronger statistical right incoherence assumption than ours: it needs an entry-wise

bound of maxt maxi=1,2,...,r |(at)i|2 ≤ ηλ+. Lastly, we develop important extensions of our main

result for (i) only tracking subspace changes (without detecting the change), and (ii) for subspaces

changing by a little at each time t.

114

An earlier version of Theorem 3.39 appeared in ICML 2018 [23], but that was a conference

paper and the proof of that result is only provided in an unpublished supplement on ArXiV.

The results of the current manuscript improve upon the ICML result in various ways: we need a

weaker statistical right incoherence assumption, a weaker lower bound on SEj , and we develop two

important extensions of our main result for subspace changes at each time and for applications

not requiring change detection. Moreover, [23] did not prove the result for PCA in data-dependent

noise, but only used the result proved in our older ISIT paper [34]. The problem of ST with missing

data is a special case of robust ST, while ST with missing data and outliers is a simple generalization

of robust ST. Interesting guarantees for both of these follow as easy corollaries of either our current

result or of its earlier version from [23]. A corollary of the result of [23] for ST-miss is presented in

[22]. In comparison to the result of [22], a similarly derived ST-miss corollary of our current result

has all the advantages mentioned earlier in this paragraph.

3.5 Extensions: subspace change at each time, subspace tracking without

detection

3.5.1 Subspace changing at each time

Suppose yt = ˜̀
t + xt where ˜̀

t = P(t)ãt, Pt changes by a little at each time t, but has more

significant changes at certain times tj . We show here how this case can be handled by treating

the error generated by changes at each time t as extra unstructured noise vt. Assume that ãt’s

are zero mean, bounded, and i.i.d. with diagonal covariance matrix Λ̃. Let λ̃+ be its maximum

eigenvalue and f̃ the condition number. Define Pj as the matrix of top r left singular vectors

of the matrix L̃j := [˜̀tj ,
˜̀
tj+1, . . . , ˜̀

tj+1−1], or equivalently of [P(tj),P(tj+1), . . . ,P(tj+1−1)]. Let

at := P ′j
˜̀
t, `t := Pjat and vt := ˜̀

t − `t = Pj,⊥ ˜̀
t.

Another way to understand the above is that we are expressing L̃j = Lj + Vj where Lj is the

rank-r SVD of L̃, while Vj is the rest. While LjV
′
j = 0, we cannot say anything about individual

vectors `tv
′
t or their expected value. In general, E[`tvt

′] 6= 0. But even then, we can always use

Cauchy-Schwarz to get the bound ‖E[`tv
′
t]|‖ ≤

√
λ+λ+

v . Thus, to analyze this case, we need to

115

modify Corollary 3.32 for PCA-SDDN as follows: we now need 4
√
bqf+ λ+

v
λ−+

√
λ+
v
λ− f < 0.4εSE. There

is no change to the required lower bound on α. From our definition of vt, λ
+
v ≤ SE(Pj ,Pt)

2λ̃+.

Using λ+ ≤ λ̃+, λ̃− < λ−, a simple sufficient condition to ensure that the third term is small

(λ+
v /λ

− ≤ 0.01ε2/f) is SE(Pj ,Pt)
2 ≤ 0.01ε2/f̃2.

Corollary 3.41 (Subspace changing at each t). Consider the setting defined in the first paragraph

above. If SE(Pj ,Pt)
2 < 0.01ε2/f̃2, Theorem 3.39 applies with Pj, `t, and vt as defined above.

3.5.2 NORST-NoDet: NORST without subspace change detection

A simpler version of the NORST algorithm that does not detect change is as follows. The

robust regression (projected CS) step is exactly as explained earlier. The subspace update step is

much simpler: it just updates P̂(t) as the top r left singular vectors of L̂t;α once every α frames.

We refer to it as NORST-NoDet. We have the following guarantee for it.

Theorem 3.42. Consider Algorithm 7 with parameters set as α = Cf2µr log n, ζ = xmin/15 and

ωsupp = xmin/2. Assume everything stated in Theorem 3.39 except the lower bound on SEj. Then,

w.p. at least 1− 10dn−10,

SE(P̂(t),P(t)) ≤


min(4fSEj , 1) if t ∈ J1,

(0.3)k−1 min(4fSEj , 1) if t ∈ Jk,

ε := c
√
λ+
v /λ− if t ∈ JK ,

where J1 = [btj/αcα, (btj/αc + 1)α), Jk = [btj/αc + 1)α) + (k − 1)α, (btj/α) + (k + 1))αc for

k = 2, 3, · · · ,K − 1 and JK = [(btj/αc+ (K + 1))α, btj+1/αcα).

The time complexity is O(ndr log(1/ε)) and memory complexity is O(nα) = O(f2nr log n log(1/ε)).

The advantage of NORST-NoDet is that it does not require a lower bound on the amount of

change, SEj , and it needs fewer algorithm parameters (does not needK or ωevals). The disadvantage

is it does not detect subspace change, we cannot obtain a “smoothing” version of it that solves the

dynamic RPCA problem to ε accuracy at all times, and its subspace error bound is larger for the

116

intervals during which the subspace changes, [btj/αcα, (btj/αc+ 1)α). For times t in this interval,

the bound is min(4fSEj , 1). Assuming small enough ε, this is larger than (ε + SEj) which is the

NORST bound for this interval. The reason is NORST stops tracking after the current subspace

has been estimated accurately enough and until the next change is detected. During this period,

it uses P̂j−1 as the estimate. But NORST-NoDet updates the subspace in every interval. For the

change interval, the rank of Lt;α is more than r. It can be 2r in general. This is why it is not

possible to guarantee a better bound for the r-SVD estimate. At the same time, without extra

assumptions, it is not possible to obtain a guarantee for 2r-SVD estimate either.

For analyzing the change interval we use the following modification of PCA-SDDN. Its proof is

in Appendix 3.10. The proof of Theorem 3.42 is given in the Supplement Appendix 3.12.

Corollary 3.43. Assume that yt = `t + wt + vt with wt = M2,tM1,t`t, with `t = P0at for

t ∈ [1, α0] and `t = Pat for t ∈ [α0 + 1, α], and SE(P0,P) ≤ ∆. Assume also that Assumptions

3.29, 3.30 hold, maxt max(‖M1,tP0‖, ‖M1,tP ‖) ≤ q < 1, and the fraction of nonzeros in any row

of the noise matrix [w1,w2, . . . ,wα] is equal to b. Let g := λ+
v
λ− . If ∆ < c/f , and if α ≥ α∗ =

C max
(
q2f2

ε2SE
r log n, gf

ε2SE
max(rv, r) log n

)
then w.p. at least 1− 10n−10,

SE(P̂ ,P) ≤ 1.1

(
3((α0/α)∆ + 4

√
bq)f +

λ+
v

λ−

)
≤ 3.3∆f + 4.4

√
bqf + 1.1

λ+
v

λ−
.

3.6 Proof of correctness of the NORST algorithm

In this section we state the three main lemmas and explain how they help prove Theorem 3.39.

After this, we prove the three lemmas.

3.6.1 Main Lemmas

We define or recall a few things first.

1. Recall ∆ = maxj SE(Pj−1,Pj), let ∆0 = SE(P̂0,P0); recall c
√
λ+
v /λ− < ε ≤ 0.01 < 0.2

117

2. Let P̂j,0 = P̂j−1 and recall (from Algorithm) that P̂j−1 = P̂j−1,K :

3. Constants for Theorem 3.39: c1 = c2 = 0.001 (bounds on

max-outlier-frac-col,max-outlier-frac-row(α)), and c3 = 1/(30
√
µ). We use b0 = c2/f

2

to denote the bound on max-outlier-frac-row(α).

4. Let q0 := 1.2(ε+ SEj), qk = 1.2 max(qk−1/4, ε). Clearly qk = max(0.3kq0, 1.2ε).

First consider the simpler case when tj ’s are known. In this case t̂j = tj . Define the events

• Γ0,0 := {assumed bound on SE(P̂0,P0)},

• Γ0,k := Γ0,k−1 ∩ {SE(P̂0,k,P0) ≤ SE(P̂0,P0)},

• Γj,0 := Γj−1,K , Γj,k := Γj,k−1∩{SE(P̂j,k,Pj) ≤ qk−1/4} for j = 1, 2, . . . , J and k = 1, 2, . . . ,K.

• Using the expression for K given in the theorem, and since P̂j = P̂j,k (from the Algorithm),

it follows that Γj,K implies SE(P̂j ,Pj) = SE(P̂j,K ,Pj) ≤ ε.

Observe that, if we can show that Pr(ΓJ,K |Γ0,0) ≥ 1−dn−10 we will have obtained all the subspace

recovery bounds of Theorem 3.39. The next two lemmas, Lemmas 3.44 and 3.45, applied sequen-

tially help show that this is true. The first one proves that Pr(Γj,1|Γj,0) ≥ 1− 10n−10, the second

one proves that Pr(Γj,k|Γj,k−1) ≥ 1 − 10n−10 for k = 1, 2, . . . ,K. The bounds on ‖`t − ˆ̀
t‖ follow

easily.

To prove the actual result with tj unknown, we also need Corollary 3.47 and Lemma 3.48 which

proves that the change detection step works as desired. Moreover, we will need a different definition

of Γj,0; we cannot set it equal to Γj−1,K . The proof is given in Appendix 3.11.

Lemma 3.44 (first update interval). Under the conditions of Theorem 3.39, conditioned on Γj,0,

1. for all t ∈ [t̂j , t̂j + α), ‖Ψ(`t + vt)‖ ≤ (ε + ∆)
√
µrλ+ +

√
rvλ

+
v < xmin/15, ‖x̂t,cs − xt‖ ≤

7xmin/15 < xmin/2, T̂t = Tt, the error et := x̂t − xt satisfies

et = ITt
(
ΨTt

′ΨTt
)−1

ITt
′Ψ(`t + vt) (3.7)

and ‖et‖ ≤ 1.2[(ε+ ∆)
√
µrλ+ +

√
rvλ

+
v]. Here Ψ = I − P̂j,0P̂j,0

′. Recall we let P̂j,0 = P̂j−1.

118

2. w.p. at least 1− 10n−10, P̂j,1 satisfies SE(P̂j,1,Pj) ≤ max(q0/4, ε), i.e., Γj,1 holds.

Lemma 3.45 (k-th update interval). Under the conditions of Theorem 3.39, conditioned on Γj,k−1,

1. for all t ∈ [t̂j + (k − 1)α, t̂j + kα − 1), all claims of the first part of Lemma 3.44 holds,

‖Ψ(`t + vt)‖ ≤ max(0.3k−1(ε + ∆), ε)
√
µrλ+ +

√
rvλ

+
v , et satisfies (3.7), and ‖et‖ ≤

max((0.3)k−1 · 1.2(ε+ ∆), ε)
√
µrλ+ +

√
rvλ

+
v . Here Ψ = I − P̂j,k−1P̂j,k−1

′.

2. w.p. at least 1− 10n−10, P̂j,k satisfies SE(P̂j,k,Pj) ≤ max(qk−1/4, ε), i.e., Γj,k holds.

Remark 3.46. For the case of j = 0, in both the lemmas above, ∆ gets replaced by SE(P̂0,P0).

Corollary 3.47. Under the conditions of Theorem 3.39, the following also hold.

1. For all t ∈ [tj , t̂j), conditioned on Γj−1,K , all claims of the first item of Lemma 3.44 hold.

2. For all t ∈ [t̂j + Kα, tj+1), conditioned on Γj,K , the first item of Lemma 3.45 holds with

k = K.

Thus, for all times t, under appropriate conditioning, et satisfies (3.7).

The following lemma shows that, whp, we can detect subspace change within 2α time instants

without any false detections. Recall that the detection threshold ωevals = 2ε2λ+.

Lemma 3.48 (Subspace Change Detection). Assume that the conditions of Theorem 3.39 hold.

1. Consider an α-length time interval J α ⊂ [tj , tj+1] during which P̂(t−1) = P̂j−1 so that Ψ =

I − P̂j−1P̂j−1
′. Let Φ = Ψ. Assume that SE(P̂j−1,Pj−1) ≤ ε and et satisfies (3.7). Then,

w.p. at least 1− 10n−10,

λmax

(
1

α

∑
t∈J α

Φ ˆ̀
t
ˆ̀
t
′Φ

)
≥ 0.59λ−SEj(SEj − 8ε) > ωevals

since SEj > 9
√
fε.

2. Consider an α-length time interval J α ⊂ [tj , tj+1] during which P̂(t−1) = P̂j so that Ψ =

I − P̂jP̂j
′. Let Φ = Ψ. Assume that SE(P̂j ,Pj) ≤ ε and et satisfies (3.7). Then, w.p. at

119

least 1− 10n−10,

λmax

(
1

α

∑
t∈J α

Φ ˆ̀
t
ˆ̀
t
′Φ

)
≤ 1.37ε2λ+ < ωevals

3.6.2 Proof of the first two lemmas

The projected CS proof (item one of the first two lemmas) uses the following lemma from [28]

that relates the s-Restricted Isometry Constant (RIC), δs(.) [2] of I − PP ′ to incoherence of P .

Lemma 3.49. [[28]] For an n× r basis matrix P , (1) δs(I − PP ′) = max|T |≤s ‖IT ′P ‖2; and (2)

max|T |≤s ‖IT ′P ‖2 ≤ smaxi=1,2,...,n ‖Ii′P ‖2 ≤ sµr/n.

The last bound of the above lemma used the definition of the incoherence parameter µ. We

will apply this lemma with s = max-outlier-frac-col · n. The subspace update step proof (item 2 of

the first two lemmas) uses Corollary 3.32 for PCA-SDDN and the following simple lemma proved

in the Appendix.

Lemma 3.50. Let Q1, Q2 and Q3 be r-dimensional subspaces in Rn such that SE(Q1,Q2) = ∆1

and SE(Q2,Q3) = ∆2. Then, ∆1 − 2∆2 ≤ SE(Q1,Q3) ≤ ∆1 + ∆2.

Proof of Lemma 3.44. Proof of item 1. First consider j > 0. We have conditioned on the event

Γj,0 := Γj−1,K . This implies that SE(P̂j−1,Pj−1) ≤ ε.

For the interval t ∈ [t̂j , t̂j + α), P̂(t−1) = P̂j−1 and thus Ψ = I − P̂j−1P̂j−1
′ (from Algorithm).

Let s := max-outlier-frac-col · n. For the sparse recovery step, we need to bound the 2s-RIC of

Ψ. To do this, we obtain bound on max|T |≤2s ‖IT ′P̂j−1‖ as follows. Consider any set T such that

|T | ≤ 2s. Then, ∥∥∥IT ′P̂j−1

∥∥∥ ≤ ∥∥∥IT ′(I − Pj−1Pj−1
′)P̂j−1

∥∥∥+
∥∥∥IT ′Pj−1Pj−1

′P̂j−1

∥∥∥
≤ SE(Pj−1, P̂j−1) +

∥∥IT ′Pj−1

∥∥
= SE(P̂j−1,Pj−1) +

∥∥IT ′Pj−1

∥∥
Using Lemma 3.49, and the bound on max-outlier-frac-col from Theorem 3.39,

max
|T |≤2s

‖IT ′Pj−1‖2 ≤ 2smax
i
‖Ii′Pj−1‖2 ≤

2sµr

n
≤ 0.01 (3.8)

120

Thus, using SE(P̂j−1,Pj−1) ≤ ε, (where c
√
λ+
v /λ− ≤ ε ≤ 0.01),

max
|T |≤2s

∥∥∥IT ′P̂j−1

∥∥∥ ≤ ε+ max
|T |≤2s

∥∥IT ′Pj−1

∥∥ ≤ ε+ 0.1

Finally, using Lemma 3.49, δ2s(Ψ) ≤ 0.112 < 0.15. Hence∥∥∥(ΨTt ′ΨTt)−1
∥∥∥ ≤ 1

1− δs(Ψ)
≤ 1

1− δ2s(Ψ)
≤ 1

1− 0.15
< 1.2.

When j = 0, there are some minor changes. From the initialization assumption, we have

SE(P̂0,P0) ≤ 0.25. Thus, max|T |≤2s

∥∥∥IT ′P̂0

∥∥∥ ≤ 0.25 + 0.1 = 0.35. Thus, using Lemma 3.49,

δ2s(Ψ0) ≤ 0.352 < 0.15. The rest of the proof given below is the same for j = 0 and j > 0.

Next we bound norm of bt := Ψ(`t + vt).

‖bt‖ = ‖Ψ(`t + vt)‖ ≤
∥∥∥(I − P̂j−1P̂j−1

′)Pjat

∥∥∥+ ‖vt‖ ≤ SE(P̂j−1,Pj) ‖at‖+
√
rvλ

+
v

(a)

≤ (ε+ SE(Pj−1,Pj))
√
µrλ+ +

√
rvλ

+
v

where (a) follows from Lemma 3.50 with Q1 = P̂j−1, Q2 = Pj−1 and Q3 = Pj . Under the

assumptions of Theorem 3.39, the RHS of (a) is bounded by xmin/15. This is why we have set

ξ = xmin/15 in the Algorithm. Using these facts, and δ2s(Ψ) ≤ 0.15, the CS guarantee from [2,

Theorem 1.3] implies that

‖x̂t,cs − xt‖ ≤ 7ξ = 7xmin/15 < xmin/2

Consider support recovery. From above,

|(x̂t,cs − xt)i| ≤ ‖x̂t,cs − xt‖ ≤ 7xmin/15 < xmin/2

The Algorithm sets ωsupp = xmin/2. Consider an index i ∈ Tt. Since |(xt)i| ≥ xmin,

xmin − |(x̂t,cs)i| ≤ |(xt)i| − |(x̂t,cs)i|

≤ |(xt − x̂t,cs)i| <
xmin

2

Thus, |(x̂t,cs)i| > xmin
2 = ωsupp which means i ∈ T̂t. Hence Tt ⊆ T̂t. Next, consider any j /∈ Tt.

Then, (xt)j = 0 and so

|(x̂t,cs)j | = |(x̂t,cs)j)| − |(xt)j | ≤ |(x̂t,cs)j − (xt)j | <
xmin

2

121

which implies j /∈ T̂t and T̂t ⊆ Tt implying that T̂t = Tt.

With T̂t = Tt and since Tt is the support of xt, xt = ITtITt
′xt, and so

x̂t = ITt
(
ΨTt

′ΨTt
)−1

ΨTt
′(Ψ`t + Ψxt + Ψvt)

= ITt
(
ΨTt

′ΨTt
)−1

ITt
′Ψ(`t + vt) + xt

since ΨTt
′Ψ = I ′TtΨ

′Ψ = ITt
′Ψ. Thus et = x̂t − xt satisfies

et = ITt
(
ΨTt

′ΨTt
)−1

ITt
′Ψ(`t + vt) := (e`)t + (ev)t,

‖et‖ ≤
∥∥∥(ΨTt ′ΨTt)−1

∥∥∥∥∥ITt ′Ψ(`t + vt)
∥∥

≤ 1.2
∥∥ITt ′Ψ(`t + vt)

∥∥
Proof of Item 2 : Recall that q0 := 1.2(ε + SEj), qk = 1.2 max(qk−1/4, ε) = max(0.3kq0, 1.2ε).

From our definition of K, 0.3Kq0 = ε. Thus, for k ≤ K, max(qk−1/4, ε) = qk−1/4.

We are considering the interval [t̂j , t̂j+α). Since ˆ̀
t = `t−et+vt with et satisfying (3.7), updat-

ing P̂(t) from the ˆ̀
t’s is a problem of PCA in sparse data-dependent noise (SDDN). To analyze this,

we use Corollary 3.32. Define (e`)t = ITt (ΨTt
′ΨTt)

−1 ITt
′Ψ`t and (ev)t = ITt (ΨTt

′ΨTt)
−1 ITt

′Ψvt.

Recall from the Algorithm that we compute P̂j,1 as the top r eigenvectors of 1
α

∑t̂j+α−1

t=t̂j
ˆ̀
t
ˆ̀
t
′. In the

notation of Corollary 3.32, yt ≡ ˆ̀
t, wt ≡ (e`)t, vt ≡ (ev)t+vt, `t ≡ `t, Ms,t = − (ΨTt

′ΨTt)
−1 ΨTt

′,

P̂ = P̂j,1, P = Pj , and so ‖Ms,tP ‖ = ‖ (ΨTt
′ΨTt)

−1 ΨTt
′Pj‖ ≤ 1.2(ε + SEj) := q0. Also,

λ+
v ≡ 2.2λ+

v since E[(ev)t(ev)t
′] ≤ (1.2)2λ+

v . And b ≡ b0 which is the upper bound on

max-outlier-frac-row(α). Applying Corollary 3.32 with q ≡ q0, b ≡ b0 and using εSE = max(q0/4, ε),

observe that we require

4
√
b0q0f + (2.2)2λ+

v /λ
− ≤ 0.4 max(q0/4, ε).

From above, max(q0/4, ε) = q0/4 (if the max is ε we stop the tracking). The required bound

holds since q0/4 ≥ ε > c
√
λ+
v /λ− (from Theorem) and

√
b0 = 0.01/f . Corollary 3.32 also requires

α ≥ α∗ which is defined in it. Our choice of α = Cf2µr log n satisfies this since q2
0/ε

2
SE = 42 and

(λ+
v /λ

−)/ε2
SE < C. Thus, by Corollary 3.32, with probability at least 1 − 10n−10, SE(P̂j,1,Pj) ≤

max(q0/4, ε).

122

Remark 3.51 (Clarification about conditioning). In the proof above we have used Corollary 3.32

for ˆ̀
t’s for t ∈ J α := [t̂j , t̂j + α). This corollary assumes that, for t ∈ J α, at’s are mutually

independent and Ms,t’s are deterministic matrices. Let yold := {y1,y2, . . . ,yt̂j−1}. We apply

Corollary 3.32 conditioned on yold, for a yold ∈ Γj,0. Conditioned on yold, clearly, the matrices

Ms,t used in the proof above are deterministic. Also yold is independent of the at’s for t ∈ J α and

thus, even conditioned on yold, the at’s for t ∈ J α are mutually independent. Corollary 3.32 tells us

that, for any yold ∈ Γj,0, conditioned on yold, w.p. at least 1−10n−10, SE(P̂j,1,Pj) ≤ max(q0/4, ε).

Since this holds with the same probability for all yold ∈ Γj,0, it also holds with the same probability

when we condition on Γj,0. Thus, conditioned on Γj,0, with this probability, Γj,1 holds. An analogous

argument also applies for the next proof.

Proof of Lemma 3.45. We first present the proof for the k = 2 case and then generalize it for an

arbitrary k. Consider k = 2. We have conditioned on Γj,1. This implies that SE(P̂j,1,Pj) ≤ q0/4.

We consider the interval t ∈ [t̂j + α, t̂j + 2α). For this interval, P̂(t−1) = P̂j,1 and thus Ψ =

I − P̂j,1P̂j,1
′. Consider any set T such that |T | ≤ 2s. We have

∥∥∥IT ′P̂j,1∥∥∥ ≤ ∥∥∥IT ′(I − PjPj
′)P̂j,1

∥∥∥+
∥∥∥IT ′PjPj ′P̂j,1∥∥∥

≤ SE(Pj , P̂j,1) +
∥∥IT ′Pj∥∥ = SE(P̂j,1,Pj) +

∥∥IT ′Pj∥∥
The equality holds since SE is symmetric for subspaces of the same dimension. Using SE(P̂j,1,Pj) ≤

max(q0/4, ε), (3.8),

max
|T |≤2s

∥∥∥IT ′P̂j,1∥∥∥ ≤ max(q0/4, ε) + max
|T |≤2s

∥∥IT ′Pj∥∥
≤ max(q0/4, ε) + 0.1.

By the assumptions of Theorem 3.39, q0 ≤ 0.96 and ε ≤ 0.2. Using this and Lemma 3.49,

δ2s(Ψj) = max
|T |≤2s

∥∥∥IT ′P̂j,1∥∥∥2
≤ 0.352 < 0.15

=⇒
∥∥∥(ΨTt ′ΨTt)−1

∥∥∥ ≤ 1.2.

123

Finally,

‖bt‖ = ‖Ψ(`t + vt)‖ ≤
∥∥∥(I − P̂j,1P̂j,1

′)Pjat

∥∥∥+ ‖vt‖

≤ max(q0/4, ε)
√
µrλ+ +

√
rvλ

+
v

The rest of the proof is the same9 and this ensures exact support recovery and the expression for

et.

Proof of Item 2 : Again, updating P̂(t) using ˆ̀
t’s is a PCA-SDDN problem. We use Corol-

lary 3.32. We compute P̂j,2 as the top r eigenvectors of 1
α

∑t̂j+2α−1

t=t̂j+α
ˆ̀
t
ˆ̀
t
′. From item 1, et sat-

isfies (3.7) for this interval. In the notation of Corollary 3.32, yt ≡ ˆ̀
t, wt ≡ (e`)t, `t ≡ `t,

vt ≡ (ev)t + vt, P ≡ Pj , P̂ ≡ P̂j,2, and Ms,t = − (ΨTt
′ΨTt)

−1 ΨTt
′. So ‖Ms,tPj‖ =

‖ (ΨTt
′ΨTt)

−1 ΨTt
′Pj‖ ≤ 1.2 max(q0/4, ε) := q1. Applying Corollary 3.32 with q ≡ q1, b ≡ b0

(b0 bounds max-outlier-frac-row(α)), and setting εSE = max(q1/4, ε), observe that we require

4
√
b0q1f + (2.2)2λ+

v /λ
− ≤ 0.4 max(q1/4, ε)

Once again recall that the max is q1/4. The above bound holds since
√
b0f ≤ 0.01 and q1/4 >

ε >
√
λ+
v /λ−. Corollary 3.32 also requires α ≥ α∗. Our choice of α = Cf2µr log n satisfies this

requirement since q2
1/ε

2
SE = 42 and (λ+

v /λ
−)/ε2

SE < C. Thus, from Corollary 3.32, with probability

at least 1− 10n−10, SE(P̂j,2,Pj) ≤ max(q1/4, ε).

(B) General k: We have conditioned on Γj,k−1. This implies that SE(P̂j,k−1,Pj) ≤

max(qk−1/4, ε). Consider the interval [t̂j + (k − 1)α, t̂j + kα). In this interval, P̂(t−1) = P̂j,k−1

and thus Ψ = I − P̂j,k−1P̂j,k−1
′. Using the same idea as for the k = 2 case, we have that for the

9Notice here that, we could have loosened the required lower bound on xmin for this interval in the case when
there is no noise

124

k-th interval, qk−1 = max(0.3k−1q0, ε). Pick εSE = max(qk−1/4, ε). From this it is easy to see that

δ2s(Ψ) ≤
(

max
|T |≤2s

∥∥∥IT ′P̂j,k−1

∥∥∥)2

≤ (SE(P̂j,k−1,Pj) + max
|T |≤2s

∥∥IT ′Pj∥∥)2

(a)

≤ (SE(P̂j,k−1,Pj) + 0.1)2

≤
[
max

(
0.3k−1(ε+ SE(Pj−1,Pj), ε

)
+ 0.1

]2
< 0.15

where (a) follows from (3.8). Also, as before,

‖Ψ(`t + vt)‖ ≤ SE(P̂j,k−1,Pj) ‖at‖+ ‖vt‖

≤ max
(

0.3k−1(ε+ SE(Pj−1,Pj)), ε
)√

µrλ+ +
√
rvλ

+
v

(a)

≤ max
(

0.3k−1(ε+ ∆), ε
)√

µrλ+ +
√
rvλ

+
v

Proof of Item 2 : Again, updating P̂(t) from ˆ̀
t’s is a problem of PCA in sparse data-dependent

noise given in Corollary 3.32. From Item 1 of this lemma we know that, for t ∈ [t̂j+(k−1)α, t̂j+kα],

et satisfies (3.7). We update the subspace, P̂j,k as the top r eigenvectors of 1
α

∑t̂j+kα−1

t=t̂j+(k−1)α
ˆ̀
t
ˆ̀
t
′.

In the setting above yt ≡ ˆ̀
t, wt ≡ (e`)t, `t ≡ `t, vt ≡ (ev)t + vt, and Ms,t = − (ΨTt

′ΨTt)
−1 ΨTt

′,

and so ‖Ms,tPj‖ = ‖ (ΨTt
′ΨTt)

−1 ΨTt
′Pj‖ ≤ 1.2 max(qk−2/4, ε) := qk−1. Applying Corollary 3.32

with q ≡ qk−1, b ≡ b0 (b0 bounds max-outlier-frac-row(α)), and setting εSE = max(qk−1/4, ε), we

require4
√
b0qk−1f + λ+

v /λ
− ≤ 0.4 max(qk−1/4, ε). This holds as explained earlier and hence, by

Corollary 3.32, the result follows.

3.6.3 Proof of Lemma 3.48

Proof. Proof of Item 1 : We are considering an α-consecutive frames interval J α in [tj , tj+1) during

which P̂(t−1) = P̂j−1. Thus Ψ = Φ = I − P̂j−1P̂j−1
′. Recall from earlier that at all times

t, ˆ̀
t = `t − et + vt, where et = (e`)t + (ev)t, wt ≡ (e`)t = ITt (ΨTt

′ΨTt)
−1 ITt

′Ψ`t is sparse

and data-dependent noise, and vt ≡ (ev)t + vt is small unstructured noise. As in the earlier

proofs, wt = (e`)t can be expressed as wt = ITtMs,t`t where Ms,t = (ΨTt
′ΨTt)

−1 ITt
′Ψ. Thus,

125

q = q0 = 1.2SE(P̂j−1,Pj) ≤ 1.2(ε+ SEj) and b = b0. Let

1

α

∑
t

Φ ˆ̀
t
ˆ̀
t
′Φ =

1

α

∑
t

Φ`t`t
′Φ′ + ΦnoiseΦ + ΦcrossΦ

where noise = 1
α

∑
twtw

′
t + 1

α

∑
t vtv

′
t and cross contains the cross terms. By Weyl’s inequality,

λmax

(
1

α

∑
t∈J α

Φ ˆ̀
t
ˆ̀
t
′Φ

)
≥ λmax

(
1

α

∑
t

Φ`t`t
′Φ

)
− ‖ΦcrossΦ‖ (3.9)

Using Corollary 3.54 from Appendix 3.10, w.p. at least 1−10n−10, if α is as given in our Theorem,

‖ΦcrossΦ′‖ ≤ 2.02
√
b‖ΦPj‖q0λ

+ (3.10)

Since ‖ΦPj‖ ≤ q = 1.2(ε+ SEj), using the above two inequalities,

λmax

(
1

α

∑
t∈J α

Φ ˆ̀
t
ˆ̀
t
′Φ

)
≥

λmax

 1

α

∑
t∈J α

ΦPjatat
′Pj
′Φ︸ ︷︷ ︸

Term1

− 2.02
√
b(1.2(ε+ SEj)

2)λ+ (3.11)

We bound the first term of (3.11), Term1, as follows. Let ΦPj
QR
= EjRj be its reduced QR

decomposition. Thus Ej is an n × r matrix with orthonormal columns and Rj is an r × r upper

triangular matrix. Let

A := Rj

(
1

α

∑
t∈J α

atat
′

)
Rj
′.

Observe that Term1 can also be written as

Term1 =

[
Ej Ej,⊥

]A0

0 0


 Ej

′

Ej,⊥
′

 (3.12)

and thus λmax(A) = λmax(Term1). We work with λmax(A) in the sequel. We will use the following

simple claim.

Claim 3.52. If X � 0 (i.e., X is a p.s.d matrix), where X ∈ Rr×r, then RXR′ � 0 for all

R ∈ Rr×r.

126

Proof. Since X is p.s.d., y′Xy ≥ 0 for any vector y. Use this with y = R′z for any z ∈ Rr. We

get z′RXR′z ≥ 0. Since this holds for all z, RXR′ � 0.

By Lemma 3.55 from Appendix 3.10, with ε0 = 0.01λ−,

Pr

(
1

α

∑
t

atat
′ − (λ− − ε0)I � 0

)
≥ 1− 2n−10

By Claim 3.52 from above, with probability 1− 2n−10,

Rj

(
1

α

∑
t

atat
′ − (λ− − ε0)I

)
Rj
′ � 0

=⇒ λmin

(
Rj

(
1

α

∑
t

atat
′ − (λ− − ε0)I

)
Rj
′

)
≥ 0

Using Weyl’s inequality, with the same probability,

λmin

(
Rj

(
1

α

∑
t

atat
′ − (λ− − ε0)I

)
Rj
′

)

≤ λmax

(
Rj

(
1

α

∑
t

atat
′

)
Rj
′

)
− (λ− − ε0)λmax

(
RjRj

′)
and so,

λmax(A) ≥ (λ− − ε0)λmax(RjRj
′). (3.13)

Using Lemma 3.50 and since SE(P̂j−1,Pj−1) ≤ ε we get

λmax(RjRj
′) = ‖Rj‖2 = SE2(P̂j−1,Pj) ≥ (SEj − 2ε)2 (3.14)

Thus, combining (3.11), (3.12), (3.13), (3.14), w.p. at least 1− 10n−10,

λmax

(
1

α

∑
t∈J α

Φ ˆ̀
t
ˆ̀
t
′Φ

)

≥ 0.99λ−(SEj − 2ε)2 − 2.02
√
b0(1.2(ε+ SEj)

2)λ+

≥0.99λ−SEj(0.6SEj − 4.8ε) = 0.59λ−SEj(SEj − 8ε)

In the above, we used
√
b0f = 0.1. Since SEj > 9

√
fε, 0.59λ−SEj(SEj − 8ε) > 5λ+ε2 > ωevals.

127

Proof of Item 2 : We proceed as in the proof of item 1 except that now Φ = Ψ = I − P̂jP̂
′
j . Thus,

q = qK = ε and ‖ΦPj‖ ≤ qK . Using Weyl’s inequality and Corollary 3.54 from Appendix 3.10,

w.p. at least 1− 10n−10,

λmax

(
1

α

∑
t∈J α

Φ ˆ̀
t
ˆ̀
t
′Φ

)

≤ λmax

(
1

α

∑
t

Φ`t`t
′Φ

)
+ ‖ΦcrossΦ‖+ λmax(ΦnoiseΦ)

≤ λmax

 1

α

∑
t∈J α

ΦPjatat
′Pj
′Φ︸ ︷︷ ︸

Term1


+ 2.02

√
b‖ΦPj‖qKλ+ + 1.01

√
bq2
Kλ

+ + ε2λ−

Proceeding as before to bound λmax(Term1), define ΦPj
QR
= EjRj , define A as before, we know

λmax(Term1) = λmax(Ej
′(Term1)Ej) = λmax(A). Further,

λmax(A) = λmax

(
Rj

(
1

α

∑
t∈J α

atat
′

)
Rj
′

)
(a)

≤ λmax

(
1

α

∑
t∈J α

atat

)
λmax(RjRj

′)

where (a) uses Ostrowski’s theorem [12, Theorem 5.4.9]. We have

λmax(RjRj
′) = σ2

max(Rj) = ‖ΦPj‖2 ≤ ε2

and we can bound λmax(1
α

∑
t∈J α atat

′) using the first item of Lemma 3.55. Combining all of the

above, and using ‖ΦPj‖ ≤ qK ≤ ε and b0f
2 = 0.01, w.p. at least 1− 10n−10,

λmax

(
1

α

∑
t∈J α

Φ ˆ̀
t
ˆ̀
t
′Φ

)
≤1.37ε2λ+

Recall that ωevals = 2ε2λ+ and thus, 1.37ε2λ+ < ωevals.

128

2,000 4,000 6,000 8,000 10,000

−4

−2

0

t

lo
g
(S

E
(P̂

(t
)
,P

(t
)
))

GRASTA ORPCA s-ReProCS NORST Offline-NORST

2,000 4,000 6,000 8,000 10,000

t

Outlier Model GRASTA s-ReProCS ORPCA NORST RPCA-GD AltProj smoothing-NORST

(0.02 ms) (0.9 ms) (1.2ms) (0.9 ms) (7.8ms) (4.6ms) (1.7ms)

Moving Object 0.630 0.598 0.861 4.23× 10−4 4.283 4.441 8.2× 10−6

Bernoulli 6.163 2.805 1.072 0.002 0.092 0.072 2.3× 10−4

Figure 3.1: Top: Left plot illustrates the `t error for outlier supports generated using Moving
Object Model and right plot illustrates the error under the Bernoulli model. The values are plotted
every kα− 1 time-frames. Bottom: Comparison of ‖L̂−L‖F /‖L‖F for Online and offline RPCA
methods. Average time for the Moving Object model is given in parentheses. The offline (batch)
methods are performed once on the complete dataset.

3.7 Empirical Evaluation

In this section we present numerical experiments on synthetic and real data to validate our

theoretical claims. Extra experimental details are presented in the Supplementary Material.

Synthetic Data. First we compare the results of NORST and smoothing-NORST with RST,

Online RPCA, and static RPCA methods. We generate the changing subspaces, Pj = eγjBjPj−1 as

done in [11] where γj controls the amount of subspace change and Bj ’s are skew-symmetric matrices.

In the first experiment we used the following parameters. n = 1000, d = 12000, J = 2, t1 = 3000,

t2 = 8000, r = 30, γ1 = 0.001, γ2 = γ1. We set α = 300. Next, we generate the coefficients

at ∈ Rr as independent zero-mean, bounded random variables. They are (at)i
i.i.d∼ unif [−qi, qi]

where qi =
√
f −
√
f(i − 1)/2r for i = 1, 2, · · · , r − 1 and qr = 1. thus the condition number

is f and we selected f = 50. For the sparse supports, we considered two models according to

which the supports are generated. First we use Model G.24 [24] which simulates a moving object

pacing in the video. For the first ttrain = 100 frames, we used a smaller fraction of outliers with

129

parameters s/n = 0.01, b0 = 0.01. For t > ttrain we used s/n = 0.05 and b0 = 0.3. Secondly,

we used the Bernoulli model to simulate sampling uniformly at random, i.e., each entry of the

matrix, is independently selected with probability ρ = 0.01 for the first ttrain frames and with

probability ρ = 0.3 for subsequent frames. The sparse outlier magnitudes for both support models

are generated uniformly at random from the interval [xmin, xmax] with xmin = 10 and xmax = 20.

We initialized the s-ReProCS and NORST algorithms using AltProj applied to Y[1,ttrain] with

ttrain = 100. For the parameters to AltProj we used used the true value of r, 15 iterations and

a threshold of 0.01. This, and the choice of γ1 and γ2 ensure that SE(P̂init,P0) ≈ SE(P1,P0) ≈

SE(P2,P1) ≈ 0.01. The other algorithm parameters are set as mentioned in the theorem, i.e., K =

dlog(c/ε)e = 8, α = Cr log n = 300, ω = xmin/2 = 5 and ξ = 7xmin/15 = 0.67, ωevals = 2ε2λ+ =

7.5× 10−4. For the other online methods we implement the algorithms without modifications. The

regularization parameter for ORPCA was set as with λ1 = 1/
√
n and λ2 = 1/

√
d according to [9].

Wherever possible we set the tolerance as 10−6 and 100 iterations to match that of our algorithm.

As shown in Fig. 3.1, NORST is significantly better than all the RST methods - s-ReProCS [24],

and two popular heuristics - ORPCA [9] and GRASTA [11].

We also provide a comparison of smoothing techniques in Fig 3.1. To ensure a valid time

comparison, we implement the static RPCA methods on the entire data matrix Y . Although,

we could implement the static techniques on disjoint batches of size α, we observed that this did

not yield significant improvement in terms of reconstruction accuracy, while being considerably

slower, and thus we report only the latter setting. As can be seen, smoothing NORST outperforms

all static RPCA methods, both for the moving object and the Bernoulli models. For the batch

comparison we used PCP, AltProj and RPCA-GD. We set the regularization parameter for PCP

1/
√
n in accordance with [3]. The other known parameters, r for Alt-Proj, outlier-fraction for

RPCA-GD, are set the ground truth. For all algorithms we set the threshold as 10−6 and the

number of iterations to 100. All results are averaged over 100 independent runs.

In Fig. 3.2 we validate our claim of NORST admitting a higher fraction of outliers per row. We

only compare with AltProj since it is has the highest tolerance among other methods. We chose 10

130

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

10

20

30

b0

r

(a) Phase Transition for Alt Proj

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

10

20

30

b0

r

(b) Phase Transition for NORST

Figure 3.2: Empirical probability that ‖L̂ − L‖F /‖L‖F < 0.5 for AltProj and for smoothing
NORST. Note that NORST indeed has a much higher tolerance to outlier fraction per row as
compared to AltProj. Black denotes 0 and white denotes 1.

2,000 4,000 6,000 8,000 10,000

−4

−2

0

t

lo
g
(S

E
(P̂

(t
)
,P

(t
)
))

AltProj

xmin = 0.5 xmin = 5 xmin = 10

2,000 4,000 6,000 8,000 10,000

t

smoothing NORST

Figure 3.3: In the above plots we show the variation of the subspace errors for varying xmin.
In particular, we set all the non-zero outlier values to xmin. The results are averaged over 100
independent trials.

different values of each of r and b0 (we slightly misuse notation here to let b0 := max-outlier-frac-row

for this section only). For each pair of b0 and r we implemented NORST and ALtProj over 100

independent trials and computed the relative error, ‖L̂ − L‖F /‖L‖F for each run. We illustrate

the fraction of times the error seen by each algorithm is less than a threshold, 0.5. We chose this

threshold since for smaller values, AltProj consistently failed. As can be seen, NORST is able to

tolerate a much larger fraction of outlier-per-row as compared to AltProj.

In the third experiment we analyze the effect of the lower bound on the outlier magnitude

xmin with the performance of NORST and AltProj. We show the results in Fig. 3.3. The only

change in data generation is that we now choose three different values of xmin = {0.5, 5, 10}, and

131

we set all the non-zero entries of the sparse matrix to be equal to xmin. This is actually harder

than allowing the sparse outliers to take on any value since for a moderately low value of xmin

the outlier-lower magnitude bound of Theorem 3.39 is violated. This is indeed confirmed by the

numerical results presented in Fig. 3.3. (i) When xmin = 0.5, NORST works well since now all the

outliers get classified as the small unstructured noise vt. (ii) When xmin = 10, NORST still works

well because now xmin is large enough so that the outlier support is mostly correctly recovered. (iii)

But when xmin = 5 the NORST reconstruction error stagnates around 10−3. All AltProj errors are

much worse than those of NORST because the outlier fraction per row is the same as in the first

experiment and thus the effect of varying xmin is not pronounced.

Real Data. We also evaluate our algorithm for the task of Background Subtraction. For the

AltProj algorithm we set r = 40. The remaining parameters were used with default setting. For

NORST, we set α = 60, K = 3, ξt = ‖Ψ ˆ̀
t−1‖2. We found that these parameters work for most

videos that we verified our algorithm on. For RPCA-GD we set the “corruption fraction” α = 0.2

as described in their paper.

We use two standard datasets, the Meeting Room (MR) and the Lobby (LB) sequences. LB

is a relatively easy sequence since the background is static for the most part, and the foreground

occlusions are small in size. As can be seen from Fig. 3.4 (first two rows), most algorithms perform

well on this dataset. MR is a challenging data set since the color of the foreground (person) is very

similar to the background curtains, and the size of the object is very large. Thus, NORST is able

to outperform all methods, while being fast.

3.8 Conclusions and Future Directions

In this work we developed a fast and (nearly) delay optimal robust subspace tracking solution

that we called NORST. NORST is a mini-batch algorithm with memory complexity that is also

nearly optimal. It detects subspace changes and tracks them to ε accuracy with a delay that is

more than the subspace dimension r by only log factors: the delay is order r log n log(1/ε). The

memory complexity is n times this number while nr is the amount of memory required to store the

132

Original NORST(16.5ms) AltProj(26.0ms) RPCA-GD(29.5ms) GRASTA(2.5ms) PCP (44.6ms)

Original NORST(72.5ms)AltProj(133.1ms)RPCA-GD(113.6ms)GRASTA(18.9ms) PCP(240.7ms)

Figure 3.4: Comparison of visual performance in Foreground Background separation. The first two
rows are for the LB dataset and the last two rows are for the MR dataset. The time taken by each
algorithm (per frame) in milliseconds is provided in parenthesis.

output subspace estimate. Our guarantee for NORST needs assumptions similar to those needed

by standard robust PCA solutions. Different from standard robust PCA, we need slow subspace

change, we replace right singular vectors’ incoherence by a statistical version of it, but we need a

weaker bound on outlier fractions per row.

Slow subspace change is a natural assumption for background images of static camera videos

(with no sudden scene changes). Our statistical assumptions on at are mild and can be relaxed

further. As already explained, the identically distributed requirement can be relaxed. In the video

application, the zero mean assumption can be approximately satisfied if we estimate the mean

background image by computing the empirical average of the first ttrain frames, L̂[1:ttrain], obtained

using AltProj. Mutual independence of at’s models the fact that the changes in each background

image w.r.t. a “mean” background are independent, when conditioned on their subspace. This is

valid, for example, if the background changes are due to illumination variations or due to moving

133

curtains (see Fig. 3.4). Mutual independence can be relaxed to instead assuming an autoregressive

model on the at’s: this will require using the matrix Azuma inequality [30] to replace matrix

Bernstein. We believe the zero mean requirement can also be eliminated.

Acknowledgments

The authors would like to thank Praneeth Netrapalli and Prateek Jain of Microsoft Research

India for fruitful discussions on strengthening the guarantee by removing assumptions on subspace

change model.

3.9 References

[1] Cai, T. T., Ma, Z., and Wu, Y. Sparse pca: Optimal rates and adaptive estimation. The
Annals of Statistics 41, 6 (2013), 3074–3110.

[2] Candes, E. The restricted isometry property and its implications for compressed sensing. C.
R. Math. Acad. Sci. Paris Serie I (2008).

[3] Candès, E. J., Li, X., Ma, Y., and Wright, J. Robust principal component analysis? J.
ACM 58, 3 (2011).

[4] Candes, E. J., and Recht, B. Exact matrix completion via convex optimization. Found.
of Comput. Math, 9 (2008), 717–772.

[5] Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., and Willsky, A. S. Rank-sparsity
incoherence for matrix decomposition. SIAM Journal on Optimization 21 (2011).

[6] Cherapanamjeri, Y., Gupta, K., and Jain, P. Nearly-optimal robust matrix completion.
ICML (2016).

[7] Davis, C., and Kahan, W. M. The rotation of eigenvectors by a perturbation. iii. SIAM
J. Numer. Anal. 7 (Mar. 1970), 1–46.

[8] Dung, N. V., Trung, N. L., Abed-Meraim, K., et al. Robust subspace tracking with
missing data and outliers via admm. In 2019 27th European Signal Processing Conference
(EUSIPCO) (2019), IEEE, pp. 1–5.

[9] Feng, J., Xu, H., and Yan, S. Online robust pca via stochastic optimization. In NIPS
(2013).

134

[10] Guo, H., Qiu, C., and Vaswani, N. An online algorithm for separating sparse and low-
dimensional signal sequences from their sum. IEEE Trans. Sig. Proc. 62, 16 (2014), 4284–4297.

[11] He, J., Balzano, L., and Szlam, A. Incremental gradient on the grassmannian for online
foreground and background separation in subsampled video. In IEEE Conf. on Comp. Vis.
Pat. Rec. (CVPR) (2012).

[12] Horn, R., and Johnson, C. Matrix Analysis. Cambridge Univ. Press, 1985.

[13] Hsu, D., Kakade, S. M., and Zhang, T. Robust matrix decomposition with sparse cor-
ruptions. IEEE Trans. Info. Th. (Nov. 2011).

[14] Ipsen, I. C. An overview of relative sin θ theorems for invariant subspaces of complex matrices.
Journal of computational and applied mathematics 123, 1-2 (2000), 131–153.

[15] Javed, S., Mahmood, A., Dias, J., and Werghi, N. Robust structural low-rank tracking.
IEEE Transactions on Image Processing 29 (2020), 4390–4405.

[16] Ke, Z. T., and Wang, M. A new svd approach to optimal topic estimation. arXiv preprint
arXiv:1704.07016 (2017).

[17] Koltchinskii, V., Lounici, K., et al. Normal approximation and concentration of spectral
projectors of sample covariance. The Annals of Statistics 45, 1 (2017), 121–157.

[18] Li, R.-C. Relative perturbation theory: Ii. eigenspace and singular subspace variations. SIAM
J. Matrix Anal. Appl. 20, 2 (1998), 471–492.

[19] Lois, B., and Vaswani, N. Online matrix completion and online robust pca. In IEEE Intl.
Symp. Info. Th. (ISIT) (2015).

[20] Musco, C., and Musco, C. Randomized block krylov methods for stronger and faster
approximate singular value decomposition. In Advances in Neural Information Processing
Systems (2015), pp. 1396–1404.

[21] Nadler, B. Finite sample approximation results for principal component analysis: A matrix
perturbation approach. Ann. Statist. (2008).

[22] Narayanamurthy, P., Daneshpajooh, V., and Vaswani, N. Provable subspace tracking
from missing data and matrix completion. IEEE Transactions on Signal Processing (2019),
4245–4260.

[23] Narayanamurthy, P., and Vaswani, N. Nearly optimal robust subspace tracking. In
International Conference on Machine Learning (2018), pp. 3701–3709.

135

[24] Narayanamurthy, P., and Vaswani, N. Provable dynamic robust pca or robust subspace
tracking. IEEE Transactions on Information Theory 65, 3 (2019), 1547–1577.

[25] Netrapalli, P., Niranjan, U. N., Sanghavi, S., Anandkumar, A., and Jain, P. Non-
convex robust pca. In NIPS (2014).

[26] Ozdemir, A., Bernat, E. M., and Aviyente, S. Recursive tensor subspace tracking for
dynamic brain network analysis. IEEE Transactions on Signal and Information Processing
over Networks (2017).

[27] Qiu, C., and Vaswani, N. Real-time robust principal components’ pursuit. In Allerton
Conf. on Communication, Control, and Computing (2010).

[28] Qiu, C., Vaswani, N., Lois, B., and Hogben, L. Recursive robust pca or recursive sparse
recovery in large but structured noise. IEEE Trans. Info. Th. (August 2014), 5007–5039.

[29] Schölkopf, B., Smola, A., and Müller, K.-R. Nonlinear component analysis as a kernel
eigenvalue problem. Neural computation 10, 5 (1998), 1299–1319.

[30] Tropp, J. A. Just relax: Convex programming methods for identifying sparse signals. IEEE
Trans. Info. Th. (March 2006), 1030–1051.

[31] Tropp, J. A. User-friendly tail bounds for sums of random matrices. Found. Comput. Math.
12, 4 (2012).

[32] Vaswani, N., Bouwmans, T., Javed, S., and Narayanamurthy, P. Robust subspace
learning: Robust pca, robust subspace tracking, and robust subspace recovery. IEEE signal
processing magazine 35, 4 (2018), 32–55.

[33] Vaswani, N., and Lu, W. Modified-CS: Modifying compressive sensing for problems with
partially known support. IEEE Trans. Signal Processing (September 2010).

[34] Vaswani, N., and Narayanamurthy, P. Pca in sparse data-dependent noise. In ISIT
(2018), pp. 641–645.

[35] Vu, V. Q., and Lei, J. Minimax sparse principal subspace estimation in high dimensions.
Annals of Statistics (2013).

[36] Xiao, L., and Zhang, T. A proximal-gradient homotopy method for the l1-regularized
least-squares problem. In ICML (2012).

[37] Ye, K., and Lim, L. H. Schubert varieties and distances between subspaces of different
dimensions. SIAM Journal on Matrix Analysis and Applications 37, 3 (2016), 1176–1197.

136

[38] Yi, X., Park, D., Chen, Y., and Caramanis, C. Fast algorithms for robust pca via
gradient descent. In NIPS (2016).

[39] Zhan, J., Lois, B., Guo, H., and Vaswani, N. Online (and Offline) Robust PCA: Novel
Algorithms and Performance Guarantees. In Intnl. Conf. Artif. Intell. Stat. (AISTATS) (2016).

[40] Zhan, J., and Vaswani, N. Robust pca with partial subspace knowledge. IEEE Trans. Sig.
Proc. (July 2015).

[41] Zhan, J., and Vaswani, N. Time invariant error bounds for modified-CS based sparse signal
sequence recovery. IEEE Trans. Info. Th. 61, 3 (2015), 1389–1409.

[42] Zhang, T., Xu, C., and Yang, M.-H. Robust structural sparse tracking. IEEE transactions
on pattern analysis and machine intelligence 41, 2 (2018), 473–486.

[43] Zwald, L., and Blanchard, G. On the convergence of eigenspaces in kernel principal
component analysis. In Advances in neural information processing systems (2006), pp. 1649–
1656.

3.10 Appendix A: Proofs for Sec. 3.2

3.10.1 Proof of Theorem 3.31

Proof of Theorem 3.31. This uses the Davis-Kahan sin theta theorem [7]:

Lemma 3.53 (Davis-Kahan sin θ theorem). Let D0 be a Hermitian matrix whose span of top r

eigenvectors equals span(P). Let D be the Hermitian matrix with top r eigenvectors P̂ . Then,

SE(P̂ ,P) ≤ ‖(D −D0)P ‖
λr(D0)− λr+1(D)

≤ ‖D −D0‖
λr(D0)− λr+1(D0)− λmax(D −D0)

(3.15)

as long as the denominator is positive. The second inequality follows from the first using Weyl’s

inequality.

137

For our proof, set D0 = 1
α

∑
t `t`t

′. Notice that this is a Hermitian matrix with P as the top r

eigenvectors. Let D = 1
α

∑
t ytyt

′. Recall that P̂ is its matrix of top r eigenvectors. Observe

D −D0 =
1

α

∑
t

(ytyt
′ − `t`t

′)

=
1

α

∑
t

(wtwt
′ + vtvt

′ + `twt
′ + vtwt

′

+ `tvt
′ + wt`t

′ + wtvt
′ + vt`t

′)

:= noisew + noisevt + cross`,w + cross`,vt

+ crossvt,w + cross`,w
′ + cross`,vt

′ + crossvt,w
′

:= noise + cross + cross′

Also notice that λr+1(D0) = 0, λr(D0) = λmin

(
1
α

∑
t atat

′). Now, applying Theorem 3.53,

SE(P̂ ,P) ≤ 2‖cross‖+ ‖noise‖
λmin

(
1
α

∑
t atat

′
)
− numerator

Now, we can bound ‖cross‖ ≤ ‖E[cross]‖+ ‖cross− E[cross]‖ and similarly for the noise term.

We use the Cauchy-Schwartz inequality for bounding the expected values of both.

Recall that Mt = M2,tM1,t with b := ‖ 1
α

∑
tM2,tM2,t

′‖ and q := maxt ‖M1,tP ‖ with q < 2.

Thus,

‖E[noise]‖ ≤

∥∥∥∥∥ 1

α

∑
t

MtPΛP ′M1,t
′M2,t

′

∥∥∥∥∥+ ‖Σvt‖

≤

√√√√∥∥∥∥∥ 1

α

∑
t

MtPΛP ′M1,t
′(·)′
∥∥∥∥∥
∥∥∥∥∥ 1

α

∑
t

M2,tM2,t
′

∥∥∥∥∥+ λ+
v

≤
√

max
t
‖MtPΛP ′M1,t

′‖2 b+ λ+
v ≤
√
bq2λ+ + λ+

v (3.16)

Similarly,

‖E[cross`,wt]‖ =

∥∥∥∥∥ 1

α

∑
t

M2,tM1,tPΛP ′

∥∥∥∥∥
≤

√√√√∥∥∥∥∥ 1

α

∑
t

PΛP ′M1,t
′M1,tPΛP ′

∥∥∥∥∥
∥∥∥∥∥ 1

α

∑
t

M2,tM2,t
′

∥∥∥∥∥
≤
√

max
t
‖M1,tPΛP ′‖2 b ≤

√
bqλ+ (3.17)

138

Since vt is uncorrelated noise, E[cross`,vt] = 0 and E[crosswt,vt] = 0. We now lower bound

λmin

(
1
α

∑
t atat

′) as

λmin

(
1

α

∑
t

atat
′

)
= λmin

(
Λ−

(
1

α

∑
t

atat
′ −Λ

))

≥ λmin(Λ)− λmax

(
1

α

∑
t

atat
′ −Λ

)

≥ λ− −

∥∥∥∥∥ 1

α

∑
t

atat
′ −Λ

∥∥∥∥∥
and thus we have

SE(P̂ ,P)

≤ 4
√
bqλ+ + λ+

v + 2‖cross− E[cross]‖+ ‖noise− E[noise]‖
λ− −

∥∥ 1
α

∑
t atat

′ −Λ
∥∥− numerator

Concentration bounds. Now we only need to bound ‖noise− E[noise]‖ and ‖cross− E[cross]‖.

These are often referred to as “statistical error”, while the error due to nonzero ‖E[cross]‖ or

‖E[noise]‖ is called the “bias”. We use concentration bounds from Lemma 3.55.

‖noise− E[noise]‖+ 2‖cross− E[cross]‖

≤

∥∥∥∥∥ 1

α

∑
t

(wtwt
′ − E[wtwt

′])]

∥∥∥∥∥+

∥∥∥∥∥ 1

α

∑
t

(vtvt
′ − E[vtvt

′])]

∥∥∥∥∥
+ 2

∥∥∥∥∥ 1

α

∑
t

(`twt
′ − E[`twt

′])]

∥∥∥∥∥
+ 2

∥∥∥∥∥ 1

α

∑
t

`tvt
′

∥∥∥∥∥+ 2

∥∥∥∥∥ 1

α

∑
t

wtvt
′

∥∥∥∥∥
≤C√ηq2f

√
r log n

α
λ− + C

√
η
λ+
v

λ−

√
r log n

α
λ−

+ C
√
ηqf

√
r log n

α
λ−

+ C
√
η

√
λ+
v

λ−
f

√
r log n

α
λ− + C

√
ηq

√
λ+
v

λ−
f

√
r log n

α
λ−

≤C√ηqf
√
r log n

α
λ− + C

√
η

√
λ+
v

λ−
f

√
r log n

α
λ− := H(α)λ−

where the last line follows from using q2 < 2q and λ+
v ≤ λ+.

139

In case we only need to bound ‖noise−E[noise]‖, we can get a tighter bound that contains only

the first two terms and not all five. Clearly, we have

‖noise− E[noise]‖

≤ C√ηq2f

√
r log n

α
λ− + C

√
η
λ+
v

λ−

√
r log n

α
λ−+

:= Hnoise(α)

The bound on ‖ 1
α

∑
t atat

′ −Λ‖2 follows directly from the first item of Lemma 3.55.

3.10.2 A useful corollary that follows from above proof

From the above proof, we can write out a bound for ‖ΦcrossΦ′‖ for a projection matrix Φ by

noticing that each term of cross is of the form
∑

t `t(.)
′ = P

∑
t at(.)

′. Thus ‖P ′cross‖ = ‖cross‖.

Thus, ‖ΦcrossΦ′‖ ≤ ‖ΦP ‖‖cross‖ ≤ ‖ΦP ‖(‖E[cross]‖+ ‖cross−E[cross]‖). Similarly, we can also

get a bound on λmax(noise) = ‖noise‖.

Assume b = 0.01/f2, q > ε >
√
g. Consider cross. If α ≥

C max
(
q2f2

ε21
r log n, gf

ε21
max(rv, r) log n

)
, then H(α) ≤ ε1λ

−. If we set ε1 = 0.002 max(
√
bq,
√
bε)

and b = 0.01/f2 (bound on max-outlier-frac-row(α)), then, since ε >
√
g , α = Cf2 max(rv, r) log n

suffices. Since q ≥ ε, then, ε1 = 0.002
√
bq. Thus,

‖ΦcrossΦ′‖ ≤ ‖ΦP ‖(2
√
bqλ+ +H(α)λ−) ≤ 2.02

√
b‖ΦP ‖qλ+

Consider noise. We will use Hnoise(α) for this. If α > C max
(
q4f2

ε22
r log n, g

2

ε22
max(rv, r) log n

)
,

then Hnoise(α) ≤ ε2λ
−. If we set ε2 = 0.002

√
bmax(q2, ε2), then since ε4 > g2, thus, α =

Cf2 max(rv, r) log n suffices. Since q > ε, ε2 = 0.002
√
bq2. We have the following corollary.

140

Corollary 3.54. If α = Cf2 max(rv, r) log n, and if q ≥ ε > √g, then, w.p. 1− 10n−10,

‖ΦcrossΦ′‖ ≤ ‖ΦP ‖(2
√
bqλ+ +H(α)λ−)

≤ 2.02
√
b‖ΦP ‖qλ+,

λmax(ΦnoiseΦ) ≤ ‖noise‖ ≤
√
bq2λ+ + λ+

v +H(α)λ−

≤ 1.01
√
bq2λ+ + λ+

v

≤ 1.01
√
bq2λ+ + ε2λ−

3.10.3 Main idea of the proof of Corollary 3.43

The key difference in this proof is our choice of D0. Since we want to bound SE(P̂ ,P), we

need to pick it in such a way that its matrix of top r singular vectors equals span(P). We pick

D0 =
1

α
P
(
(α− α0)Λ + α0P

′P0ΛP ′0P
)
P ′

Clearly, λr+1(D0) = 0. With this choice of D0,

D −D0 = cross + cross′ + noise

+

(
1

α

∑
t

`t`
′
t − E[

1

α

∑
t

`t`
′
t]

)
+

(
E[

1

α

∑
t

`t`
′
t]−D0

)
where cross,noise are as defined earlier with the change that `t is now defined differently. Thus,

the only thing that changes when bounding these is our definition of q. The last term in the

expression above equals c0P⊥P
′
⊥P0ΛP ′0P⊥P⊥

′ + c0P⊥P
′
⊥P0ΛP ′0PP ′ + (.)′ with c0 := α0

α . This is

what generates the extra 4∆f term in our SE bound. A complete proof is provided in the Appendix.

3.10.4 Concentration Bounds

We state the lemma below so that it can also be used in proving the most general PCA result

given in the Supplement. Let Λt = E[atat
′], Λ̄ = 1

α

∑
t Λt, λ

+
max := maxt ‖Λt‖, λ−avg = λmin(Λ̄),

f = λ+
max/λ

−
avg, λ+

v,max := maxt ‖E[vtvt
′]‖ and g = λ+

v,max/λ
−
avg.

To use the lemma under the simpler i.i.d. assumption used in the main paper, remove the

max,avg subscripts from all terms, e.g., replace λ+
max by λ+, λ−avg by λ− and so on.

141

Lemma 3.55. With probability at least 1− 10n−10,∥∥∥∥∥ 1

α

∑
t

atat
′ − Λ̄

∥∥∥∥∥ ≤ C√ηf
√
r log n

α
λ−avg,∥∥∥∥∥ 1

α

∑
t

`twt
′ − 1

α
E

[∑
t

`twt
′

]∥∥∥∥∥
2

≤ C√ηqf
√
r log n

α
λ−avg,∥∥∥∥∥ 1

α

∑
t

wtwt
′ − 1

α
E

[∑
t

wtwt
′

]∥∥∥∥∥
2

≤ C√ηq2f

√
r log n

α
λ−avg,∥∥∥∥∥ 1

α

∑
t

`tvt
′

∥∥∥∥∥
2

≤ C√η
√
gf

√
max(rv, r) log n

α
λ−avg,∥∥∥∥∥ 1

α

∑
t

wtvt
′

∥∥∥∥∥
2

≤ C√ηq
√
gf

√
max(rv, r) log n

α
λ−avg,∥∥∥∥∥ 1

α

∑
t

vtvt
′ − 1

α
E

[∑
t

vtvt
′

]∥∥∥∥∥
2

≤ C√ηg
√
rv log n

α
λ−avg.

Proof of Lemma 3.55. atat
′ term. This and all other items use Matrix Bernstein for rectangular

matrices, Theorem 1.6 of [31]. This says the following. For a finite sequence of d1 × d2 zero mean

independent matrices Zk with

‖Zk‖2 ≤ R, and

max(‖
∑
k

E[Zk
′Zk]‖2, ‖

∑
k

E[ZkZk
′]‖2) ≤ σ2,

we have Pr(‖
∑

k Zk‖2 ≥ s) ≤ (d1 + d2) exp
(
− s2/2
σ2+Rs/3

)
≤ (d1 + d2) exp

(
−cmin

(
s2

2σ2 ,
3s
2R

))
.

Let Z̃t := atat
′ and we apply the above result to Zt = Z̃t − E[Z̃t]. with s = εα. Now

it is easy to see that ‖Zt‖ ≤ 2‖atat′‖ ≤ 2‖at‖22 ≤ 2ηrλ+
max := R and similarly, ‖E[Z2

t]‖ =

‖E[‖at‖22atat′]‖ ≤ α · maxat ‖at‖22 · maxt E[atat
′] ≤ αηr(λ+

max)2 := σ2 and thus, w.p. at most

2r exp
(
−cmin

(
ε2α

r(λ+
max)2

, ε2d
rλ+

maxε

))
. Now we set ε = ε5λ

−
min with ε5 = C

√
ηf
√

r logn
α to get our

result.

`tw
′
t term. Let Zt := `twt

′. We apply this result to Z̃t := Zt −E[Zt] with s = εα. To get the

values of R and σ2 in a simple fashion, we use the facts that (i) if ‖Zt‖2 ≤ R1, then ‖Z̃t‖ ≤ 2R1;

142

and (ii)
∑

t E[Z̃tZ̃t
′] 4

∑
t E[ZtZt

′]. Thus, we can set R to two times the bound on ‖Zt‖2 and we

can set σ2 as the maximum of the bounds on ‖
∑

t E[ZtZt
′]‖2 and ‖

∑
t E[Zt

′Zt]‖2.

It is easy to see that R = 2
√
ηrλ+

max

√
ηrq2λ+

max = 2ηrqλ+
max. To get σ2, observe that∥∥∥∥∥∑

t

E[wt`t
′`twt

′]

∥∥∥∥∥
2

≤ α(max
`t
‖`t‖2) ·max

t
‖E[wtwt

′]‖

≤ αηrλ+
max · q2λ+ = αηrq2(λ+

max)2.

Repeating the above steps, we get the same bound on ‖
∑

t E[ZtZt
′]‖2. Thus, σ2 = αηrq2(λ+

max)2.

Thus, we conclude that, ‖
∑

t `twt
′ − E[

∑
t `twt

′]‖2 ≥ εα w.p. at most

2n exp
(
−cmin

(
ε2α

ηrq2(λ+
max)2

, εα
ηrqλ+

max

))
Set ε = ε0λ

− with ε0 = cqf
√

r logn
α so that our bound holds

w.p. at most 2n−10. This follows because α ≥ Cf2r log n.

wtwt
′ , `tv

′
t, wtv

′
t and vtv

′
t terms. Apply matrix Bernstein as done above.

3.11 Appendix B: Proof of Theorem 3.39 and Corollary 3.40

Proof of Theorem 3.39. The overall structure of this proof is similar to that in [19, 39]. Define

t̂j−1,fin := t̂j−1 +Kα, tj,∗ = t̂j−1,fin +

⌈
tj − t̂j−1,fin

α

⌉
α

Thus, t̂j−1,fin is the time at which the (j − 1)-th subspace update is complete; w.h.p., this occurs

before tj . With this assumption, tj,∗ is such that tj lies in the interval [tj,∗ − α+ 1, tj,∗].

Recall from the algorithm that we increment j to j + 1 at t = t̂j +Kα := t̂j,fin. Define the events

1. Det0 := {t̂j = tj,∗} = {λmax(1
α

∑tj,∗
t=tj,∗−α+1 Φ ˆ̀

t
ˆ̀′
tΦ) > ωevals} and

Det1 := {t̂j = tj,∗ + α} = {λmax(1
α

∑tj,∗+α
t=tj,∗+1 Φ ˆ̀

t
ˆ̀′
tΦ) > ωevals},

2. SubUpd := ∩Kk=1SubUpdk where SubUpdk := {SE(P̂j,k,Pj) ≤ qk},

3. NoFalseDets := {for all J α ⊆ [t̂j,fin, tj+1), λmax(1
α

∑
t∈J α Φ ˆ̀

t
ˆ̀′
tΦ) ≤ ωevals}

4. Γ0,end := {SE(P̂0,P0) ≤ 0.25},

5. Γj,end := Γj−1,end∩
(
(Det0∩SubUpd∩NoFalseDets)∪(Det0∩Det1∩SubUpd∩NoFalseDets)

)
.

143

Let p0 denote the probability that, conditioned on Γj−1,end, the change got detected at t = tj,∗,

i.e., let

p0 := Pr(Det0|Γj−1,end).

Thus, Pr(Det0|Γj−1,end) = 1 − p0. It is not easy to bound p0. However, as we will see, this will

not be needed. Assume that Γj−1,end ∩ Det0 holds. Consider the interval J α := [tj,∗, tj,∗ + α).

This interval starts at or after tj , so, for all t in this interval, the subspace has changed. For this

interval, Φ = I − P̂j−1P̂j−1
′. Applying the first item of Lemma 3.48, w.p. at least 1− 10n−10,

λmax

(
1

α

∑
t∈J α

Φ ˆ̀
t
ˆ̀′
tΦ

)
≥ ωevals

and thus t̂j = tj,∗ + α. In other words,

Pr(Det1|Γj−1,end ∩Det0) ≥ 1− 10n−10.

Conditioned on Γj−1,end ∩Det0∩Det1, the first SVD step is done at t = t̂j +α = tj,∗+ 2α and

the subsequent steps are done every α samples. We can prove Lemma 3.44 with Γj,0 replaced by

Γj,end ∩ Det0 ∩ Det1 and Lemma 3.45 with Γj,k−1 replaced by Γj,end ∩ Det0 ∩ Det1 ∩ SubUpd1 ∩

· · · ∩ SubUpdk−1 and with the k-th SVD interval being Jk := [t̂j + (k − 1)α, t̂j + kα). Applying

Lemmas 3.44, and 3.45 for each k, we get

Pr(SubUpd|Γj−1,end ∩Det0 ∩Det1) ≥ (1− 10n−10)K+1.

We can also do a similar thing for the case when the change is detected at tj,∗, i.e. when Det0 holds.

In this case, we replace Γj,0 by Γj,end∩Det0 and Γj,k by Γj,end∩Det0∩SubUpd1∩ · · ·∩SubUpdk−1

and conclude that

Pr(SubUpd|Γj−1,end ∩Det0) ≥ (1− 10n−10)K .

Finally consider the NoFalseDets event. First, assume that Γj−1,end∩Det0∩SubUpd holds. Con-

sider any interval J α ⊆ [t̂j,fin, tj+1). In this interval, P̂(t) = P̂j , Φ = I−P̂jP̂j ′ and SE(P̂j ,Pj) ≤ ε.

Using the second part of Lemma 3.48 we conclude that w.p. at least 1− 10n−10,

λmax

(
1

α

∑
t∈J α

Φ ˆ̀
t
ˆ̀′
tΦ

)
< ωevals

144

Since Det0 holds, t̂j = tj,∗. Thus, we have a total of b tj+1−tj,∗−Kα−α
α c intervals J α that are subsets

of [t̂j,fin, tj+1). Moreover, b tj+1−tj,∗−Kα−α
α c ≤ b tj+1−tj−Kα−α

α c ≤ b tj+1−tj
α c − (K + 1) since α ≤ α.

Thus,

Pr(NoFalseDets|Γj−1,end ∩Det0 ∩ SubUpd)

≥ (1− 10n−10)b
tj+1−tj

α
c−(K)

On the other hand, if we condition on Γj−1,end ∩Det0 ∩Det1 ∩ SubUpd, then t̂j = tj,∗ + α. Thus,

Pr(NoFalseDets|Γj−1,end ∩Det0 ∩Det1 ∩ SubUpd)

≥ (1− 10n−10)b
tj+1−tj

α
c−(K+1)

We can now combine the above facts to bound Pr(Γj,end|Γj−1,end). Recall that p0 :=

Pr(Det0|Γj−1,end). Clearly, the events (Det0∩SubUpd∩NoFalseDets) and (Det0∩Det1∩SubUpd∩

NoFalseDets) are disjoint. Thus,

Pr(Γj,end|Γj−1,end)

= p0 Pr(SubUpd ∩NoFalseDets|Γj−1,end ∩Det0)

+ (1− p0) Pr(Det1|Γj−1,end ∩Det0)·

Pr(SubUpd ∩NoFalseDets|Γj−1,end ∩Det0 ∩Det1)

≥ p0(1− 10n−10)K(1− 10n−10)b
tj+1−tj

α
c−(K)

+ (1− p0)(1− 10n−10)·

(1− 10n−10)K(1− 10n−10)b
tj+1−tj

α
c−(K+1)

= (1− 10n−10)b
tj+1−tj

α
c ≥ (1− 10n−10)tj+1−tj .

Thus, since the events Γj,end are nested, Pr(ΓJ,end|Γ0,end) =
∏
j Pr(Γj,end|Γj−1,end) ≥

∏
j(1 −

10n−10)tj+1−tj = (1− 10n−10)d ≥ 1− 10dn−10.

Proof of Corollary 3.40. It should be noted that basis(M) is not a unique matrix, it refers to

any matrix P that has orthonormal columns and whose span equals the span of M . Thus

145

basis([P̂j−1, P̂j]) ≡ basis([P̂j−1, P̂j−1,⊥P̂j]) ≡ basis([P̂j , P̂j,⊥P̂j−1]). Let us denote any of these

matrices by P̂j−1,j .

For t ∈ [t̂j−1 + Kα, tj), Pt = Pj−1 while for t ∈ [tj , t̂j + Kα − 1), Pt = Pj . For all t in these

two intervals P̂(t) = P̂j−1,j . The proof of this corollary is an easy consequence of this fact and the

fact that, for two basis matrices P1,P2 that are mutually orthonormal, i.e., for which P1
′P2 = 0,

(I − P1P
′
1 − P2P

′
2) = (I − P1P

′
1)(I − P2P

′
2).

Thus, SE(P̂j−1,j ,Pj−1) ≤ SE(P̂j−1,Pj−1) ≤ ε and SE(P̂j−1,j ,Pj) ≤ SE(P̂j ,Pj) ≤ ε.

3.12 Appendix C: Proofs for Section 3.3: Time complexity derivation and

Proof of Theorem 3.42

3.12.1 Time complexity derivation

Consider initialization. To ensure that SE(P̂0,P0) ∈ O(1/
√
r), we need to use C log r iterations

of AltProj. Since there is no lower bound in the AltProj guarantee on the required number of matrix

columns (except the trivial lower bound of rank) [25], we can use ttrain = Cr frames for initialization.

Thus the initialization complexity is O(nttrainr
2 log(

√
r) = O(nr3 log r) [25]. The projected-CS

step complexity is equal to the cost of a matrix vector multiplication with the measurement matrix

times negative logarithm of the desired accuracy in solving the l1 minimization problem. Since

the measurement matrix for the CS step is I − P̂(t−1)P̂(t−1)
′, the cost per CS step (per frame) is

O(nr log(1/ε)) [36] and so the total cost is O((d− ttrain)nr log(1/ε)). The subspace update involves

at most ((d− ttrain)/α) rank r-SVD’s on n× α matrices all of which have constant eigen-gap (this

is indirectly proved in the proofs of the second item of Lemmas 3.44 and 3.45). Thus the total time

for subspace update steps is at most ((d− ttrain)/α) ∗O(nαr log(1/ε)) = O((d− ttrain)nr log(1/ε))

[20]. Thus the running time of the complete algorithm is O(ndr log(1/ε) + nr3 log r). As long as

r2 log r ≤ d log(1/ε), the time complexity of the entire algorithm is O(ndr log(1/ε)).

146

3.12.2 Proof of Theorem 3.42 for NORST-NoDet

In this algorithm we do not detect change. We just keep updating the subspace by r-SVD

applied every α time instants on the last α ˆ̀
t’s, L̂t;α. For α-intervals J for which Pt = Pj for all

t ∈ J , there is no change to the analysis. We start at t = t0 = t̂0 = 1 with initial subspace estimate

P̂0 available. Let ∆0 = SE(P̂0,P0). The first subspace update is done at t = α, the second at

t = 2α, and so on. By Lemma 3.44 with P̂j,0 = P̂0, we can show that after one update, the error

reduces to 1.2 max(∆0/4, ε). After this, by applying Lemma 3.45 K − 1 times, we can show that,

after at most K steps with K = log(∆0/ε), the error reduces to 1.2ε. Beyond this time, the error

does not decrease further. We know that Pt = P0 for t ∈ [t0, (K + 2)α], but can change after that.

Consider the α-interval J that contains the change time t1. The projected CS analysis for

this interval remains exactly the same as above. But to analyze the subspace update for this

interval we need to use Corollary 3.43. More generally consider the j-th change, and the interval

J = [btj/αc+ 1, btj/αc+ α], which is the α-frame interval that contains tj .

For t ∈ J , we have ˆ̀
t = yt − x̂t = `t + et + vt where

et = ITt
(
ΨTt

′ΨTt
)−1

ITt
′Ψ(`t + vt) := (e`)t + (ev)t

Ψ = I − P̂j−1P̂j−1
′, `t = Pj−1at for t ∈ [btj/αc, tj) and `t = Pjat for t ∈ [tj , btj/αc+ α).

Let P̂j,0 denote the subspace estimate P̂(t) computed for this interval. We apply Corol-

lary 3.43 with yt ≡ ˆ̀
t, wt ≡ (e`)t, vt ≡ (ev)t + vt, `t ≡ `t, M1,t = − (ΨTt

′ΨTt)
−1 ΨTt

′,

P̂ = P̂j,0, P = Pj , P0 = Pj−1. Since ‖M1,tP0‖ = ‖ (ΨTt
′ΨTt)

−1 ΨTt
′Pj‖ ≤ 1.2ε, ‖M1,tP ‖ =

‖ (ΨTt
′ΨTt)

−1 ΨTt
′Pj‖ ≤ 1.2(ε + SE(Pj−1,Pj)), thus q00 = 1.2(ε + SE(Pj−1,Pj)). Also, b ≡ b0 =

0.01/f2 which is the upper bound on max-outlier-frac-row(α), ‖E[(ev)t(ev)t
′]‖ ≤ (1.2)2λ+

v . Thus,

with probability at least 1− 10n−10,

SE(P̂j,0,Pj) ≤ 2.5(3(∆f + 4 · 0.1 · 1.2(ε+ ∆) +
λ+
v

λ−
) ≤ 10∆

Here we used λ+
v
λ− = ε2 < ∆.

Redefine t̂j = btj/αc+ α and P̂j,0 to denote the estimate from the change interval. To analyze

the next α-interval for new-NORST, we apply Lemma 3.44 with above re-definitions. Thus, q0 =

147

1.2 · 10∆. We can conclude that SE(P̂j,1,Pj) ≤ max(0.3q0, ε) = q1. For the next K − 1 intervals,

we apply Lemma 3.45 K − 1 times with qk = 1.2 max(0.25qk−1, ε).

148

Algorithm 6 NORST Algorithm. We obtain P̂0 by C(log r) iterations of AltProj on Y[1,ttrain], ttrain = Cr.

1: Input: P̂0, yt; Output: x̂t, ˆ̀
t, P̂(t); Parameters: ωsupp, ξ, α, K, ωevals

2: P̂(ttrain) ← P̂0; j ← 1, k ← 1

3: phase← update; t̂0 ← ttrain;

4: for t > ttrain do

5: Ψ← I − P̂(t−1)P̂(t−1)
′

6: ỹt ← Ψyt.

7: x̂t,cs ← arg minx̃ ‖x̃‖1 s.t. ‖ỹt −Ψx̃‖ ≤ ξ.
8: T̂t ← {i : |x̂t,cs| > ωsupp}.
9: x̂t ← IT̂t(ΨT̂t

′ΨT̂t)
−1ΨT̂t

′ỹt.

10: ˆ̀
t ← yt − x̂t

11: if phase = detect and t = t̂j−1,fin + uα then

12: Φ← (I − P̂j−1P̂j−1
′).

13: B ← ΦL̂t,α with L̂t,α := [ˆ̀t−α+1, ˆ̀
t−α+2, . . . ˆ̀

t].

14: if λmax(BB′) ≥ αωevals then

15: phase← update, t̂j ← t,

16: end if

17: end if

18: if phase = update then

19: if t = t̂j + uα− 1 for u = 1, 2, · · · , then

20: P̂j,k ← SV Dr[L̂t;α], P̂(t) ← P̂j,k, k ← k + 1.

21: else

22: P̂(t) ← P̂(t−1)

23: end if

24: if t = t̂j +Kα− 1 then

25: t̂j,fin ← t, P̂j ← P̂(t)

26: k ← 1, j ← j + 1, phase← detect.

27: end if

28: end if

29: end for

30: Smoothing NORST: At t = t̂j +Kα, for all t ∈ [t̂j−1 +Kα, t̂j +Kα− 1],

31: P̂ smoothing
(t) ← basis([P̂j−1, P̂j]), where basis(M) refers to a basis matrix that has span equal

to span(M).

32: Ψ ← I − P̂ smoothing
(t) P̂ smoothing

(t)
′; x̂smoothing

t ← IT̂t(ΨT̂t
′ΨT̂t)

−1ΨT̂t
′yt; ˆ̀smoothing

t ← yt −
x̂smoothing
t .

149

Algorithm 7 NORST-NoDet

1: Input: P̂0, yt; Output: x̂t, ˆ̀
t, P̂(t); Parameters: ωsupp, ξ, α

2: P̂(ttrain) ← P̂0;

3: for t > ttrain do

4: Lines 6-11 of Algorithm 6

5: if t = ttrain + uα− 1 for u = 1, 2, · · · , then

6: P̂u ← SV Dr[L̂t;α], P̂(t) ← P̂u
7: else

8: P̂(t) ← P̂(t−1)

9: end if

10: end for

150

CHAPTER 4. SUBSPACE TRACKING FROM INCOMPLETE DATA IN

THE PRESENCE OF OUTLIERS

Praneeth Narayanamurthy, Vahid Daneshpajooh, and Namrata Vaswani

Dept. of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50010

Modified from a manuscript published in IEEE Transactions on Signal Processing1

Abstract

We study the problem of subspace tracking in the presence of missing data (ST-miss). In

recent work, we studied a related problem called robust ST. In this work, we show that a simple

modification of our robust ST solution also provably solves ST-miss and robust ST-miss. To our

knowledge, our result is the first “complete” guarantee for ST-miss. This means that we can prove

that under assumptions on only the algorithm inputs, the output subspace estimates are close

to the true data subspaces at all times. Our guarantees hold under mild and easily interpretable

assumptions, and allow the underlying subspace to change with time in a piecewise constant fashion.

In contrast, all existing guarantees for ST are partial results and assume a fixed unknown subspace.

Extensive numerical experiments are shown to back up our theoretical claims. Finally, our solution

can be interpreted as a provably correct mini-batch and memory-efficient solution to low rank

Matrix Completion (MC).

4.1 Introduction

Subspace tracking from missing data (ST-miss) is the problem of tracking the (fixed or time-

varying) low-dimensional subspace in which a given data sequence approximately lies when some of

the data entries are not observed. The assumption here is that consecutive subsets of the data are

1I performed the literature survey, writing, and designing the experiments, V.D. performed the experiments, N.V.
helped with all components.

151

well-approximated as lying in a subspace that is significantly lower-dimensional than the ambient

dimension. Time-varying subspaces is a more appropriate model for long data sequences (e.g.

long surveillance videos). For such data, if a fixed subspace model is used, the required subspace

dimension may be too large. As is common in time-series analysis, the simplest model for time-

varying quantities is to assume that they are piecewise constant with time. We adopt this model

here. If the goal is to provably track the subspaces to any desired accuracy, ε > 0, then, as we

explain later in Sec. 4.1.3, this assumption is, in fact, necessary. Of course, experimentally, our

proposed algorithm, and all existing ones, “work” (return good but not perfect estimates) even

without this assumption, as long as the amount of change at each time is small enough. The reason

is one can interpret subspace changes at each time as a “piecewise constant subspace” plus noise.

The algorithms are actually tracking the “piecewise constant subspace” up to the noise level. We

explain this point further in Sec. 4.1.3.

ST-miss can be interpreted as an easier special case of robust ST (ST in the presence of additive

sparse outliers) [33]. We also study robust ST-miss which is a generalization of both ST-miss and

robust ST. Finally, our solutions for ST-miss and robust ST-miss also provide novel mini-batch

solutions for low-rank matrix completion (MC) and robust MC respectively.

Example applications where these problems occur include recommendation system design and

video analytics. In video analytics, foreground occlusions are often the source of both missing and

corrupted data: if the occlusion is easy to detect by simple means, e.g., color-based thresholding,

then the occluding pixel can be labeled as “missing”; while if this cannot be detected easily, it is

labeled as an outlier pixel. Missing data also occurs due to detectable video transmission errors

(typically called “erasures”). In recommendation systems, data is missing because all users do not

label all items. In this setting, time-varying subspaces model the fact that, as different types of

users enter the system, the factors governing user preferences change.

Brief review of related work. ST has been extensively studied in both the controls’ and

the signal processing literature, see [14, 1, 19, 46] for comprehensive overviews of both classical and

modern approaches. Best known existing algorithms for ST and ST-miss include Projection Ap-

152

proximate Subspace Tracking (PAST) [48, 49], Parallel Estimation and Tracking by Recursive Least

Squares (PETRELS) [12] and Grassmannian Rank-One Update Subspace Estimation (GROUSE)

[3, 4, 53, 38]. Of these, PETRELS is known to have the best experimental performance. There

have been some attempts to obtain guarantees for GROUSE and PETRELS for ST-miss [4, 53, 47],

however all of these results assume the statistically stationary setting of a fixed unknown subspace

and all of them provide only partial guarantees. This means that the result does not tell us what

assumptions the algorithm inputs (input data and/or initialization) need to satisfy in order to en-

sure that the algorithm output(s) are close to the true value(s) of the quantity of interest, either at

all times or at least at certain times. For example, [4] requires that the intermediate algorithm esti-

mates of GROUSE need to satisfy certain properties (see Theorem 4.64 given later). It does not tell

us what assumptions on algorithm inputs will ensure that these properties hold. On the other hand,

[47] guarantees closeness of the PETRELS output to a quantity other than the true value of the

“quantity of interest” (here, the true data subspace); see Theorem 4.65. Of course, the advantage

of GROUSE and PETRELS is that they are streaming solutions (require a single-pass through the

data). This may also be the reason that a complete guarantee is harder to obtain for these. Other

related work includes streaming PCA with missing data [32, 20]. A provable algorithmic framework

for robust ST is Recursive Projected Compressive Sensing (ReProCS) [40, 41, 51, 34, 33]. Robust

ST-miss has not received much attention in the literature.

Provable MC has been extensively studied, e.g., [8, 35, 11]. We discuss these works in detail in

Sec. 4.3.

Contributions. (1) We show that a simple modification of a ReProCS-based algorithm called

Nearly Optimal Robust ST via ReProCS (NORST for short) [33] also provably solves the ST-miss

problem while being fast and memory-efficient. An extension for robust ST-miss is also presented.

Unlike all previous work on ST-miss, our guarantee is a complete guarantee (correctness result): we

show that, with high probability (whp), under simple assumptions on only the algorithm inputs,

the output subspace estimates are close to the true data subspaces and get to within ε accuracy

of the current subspace within a “near-optimal” delay. Moreover, unlike past work, our result

153

allows time-varying subspaces (modeled as piecewise-constant with time) and shows that NORST-

miss can provably detect and track each changed subspace quickly. Here and below, near-optimal

means that our bound is within logarithmic factors of the minimum required. For r-dimensional

subspace tracking, the minimum required delay is r; thus our delay of order r log n log(1/ε) is near-

optimal. Moreover, since ST-miss is an easier problem than robust ST, our guarantee for ST-miss

is significantly better than the original one [33] that it follows from. It does not assume a good

first subspace initialization and does not require slow subspace change.

(2) Our algorithm and result can also be interpreted as a novel provably correct mini-batch

and memory-efficient solution to low rank MC. We explain in Sec. 4.2.2 that our guarantee is

particularly interesting in the regime when subspace changes frequently enough, e.g., if it changes

every order r log n log(1/ε) time instants.

Organization. We explain the algorithm and provide the guarantees for it in Sec. 4.2; first

for the noise-free case and then for the noisy case. A detailed discussion is also given that explains

why our result is an interesting solution for MC. In this section, we also develop simple heuristics

that improve the experimental performance of NORST-miss. We provide a detailed discussion of

existing guarantees and how our work relates to the existing body of work in Sec. 4.3. Robust

ST-miss is discussed in Sec. 4.4. Exhaustive experimental comparisons for simulated and partly

real data (videos with simulated missing entries) are provided in Sec. 4.5. These show that as long

as the fraction of missing entries is not too large, (i) basic NORST-miss is nearly as good as the

best existing ST-miss approach (PETRELS), while being faster and having a complete guarantee;

(ii) its extensions have better performance than PETRELS and are also faster than PETRELS;

(iii) the performance of NORST-miss is worse than convex MC solutions, but much better than

non-convex ones (for which code is available); however, NORST-miss is much faster than the convex

MC methods. We conclude in Sec. 4.6.

154

4.1.1 Notation

We use the interval notation [a, b] to refer to all integers between a and b, inclusive, and we

use [a, b) := [a, b− 1]. ‖.‖ denotes the l2 norm for vectors and induced l2 norm for matrices unless

specified otherwise, and ′ denotes transpose. We use MT to denote a sub-matrix of M formed by

its columns indexed by entries in the set T . For a matrix P we use P (i) to denote its i-th row.

A matrix P with mutually orthonormal columns is referred to as a basis matrix and is used to

represent the subspace spanned by its columns. For basis matrices P1,P2, we use SE(P1,P2) :=

‖(I − P1P1
′)P2‖ as a measure of Subspace Error (distance) between their respective subspaces.

This is equal to the sine of the largest principal angle between the subspaces. If P1 and P2 are of

the same dimension, SE(P1,P2) = SE(P2,P1).

We use L̂t;α := [ˆ̀t−α+1, · · · , ˆ̀
t] to denote the matrix formed by ˆ̀

t and (α−1) previous estimates.

Also, r-SVD[M] refers to the matrix of top r left singular vectors of M .

A set Ω that is randomly sampled from a larger set (universe), U , is said be “i.i.d. Bernoulli

with parameter ρ” if each entry of U has probability ρ of being selected to belong to Ω independent

of all others.

We reuse C, c to denote different numerical constants in each use; C is for constants greater

than one and c for those less than one.

Definition 4.56 (µ-incoherence). An n× rP basis matrix P is µ-incoherent if maxi ‖P (i)‖22 ≤ µ
rP
n

(P (i) is i-th row of P). Clearly, µ ≥ 1.

Throughout this paper, we assume that f , which is the condition number of the population

covariance of `t, and the parameter, µ, are constants. This is assumed when the O(·) notation is

used.

155

4.1.2 Problem Statement

ST-miss is precisely defined as follows. At each time t, we observe a data vector yt ∈ Rn that

satisfies

yt = PΩt(`t) + vt, for t = 1, 2, . . . , d (4.1)

where PΩt(zi) = zi if i ∈ Ωt and 0 otherwise. Here vt is small unstructured noise, Ωt is the set of

observed entries at time t, and `t is the true data vector that lies in a fixed or changing low (r)

dimensional subspace of Rn, i.e., `t = P(t)at where P(t) is an n× r basis matrix with r � n. The

goal is to track span(P(t)) and `t either immediately or within a short delay. Denoting the set of

missing entries at time t as Tt, (4.1) can also be written as

yt := `t − ITtITt
′`t + vt. (4.2)

We use zt := −ITt ′`t to denote the missing entries. Clearly, Tt = (Ωt)
c (here c denotes the comple-

ment set w.r.t. {1, 2, . . . , n}). Writing yt as above allows us to tap into the solution framework from

earlier work [41, 33]. This was developed originally for solving robust ST which involves tracking

`t and P(t) from yt := `t + vt + xt where xt is a sparse vector with the outliers as its nonzero

entries. ST-miss can be interpreted as its (simpler) special case if we let xt = −ITtITt ′`t. It is

simpler because the support of xt, Tt, is known.

Defining the n × d matrix L := [`1, `2, . . . `d], the above is also a matrix completion (MC)

problem; with the difference that for MC the estimates are needed only in the end (not on-the-fly).

We use rL to denote the rank of L.

4.1.3 Identifiability assumptions

The above problem definition does not ensure identifiability. If L is sparse, it is impossible to

recover it from a subset of its entries. Moreover, even if it is dense, it is impossible to complete

it if all the missing entries are from a few rows or columns. Finally, if the subspace changes at

every time t, the number of unknowns (nr) is more than the amount of available data at time t (n)

making it impossible to recover all of them.

156

200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000

10−11

10−6

10−1

Number of Samples (t)

S
E

(P̂
(t
)
,P

(t
)
)

NORST-miss (piecewise-constant) NORST-miss (changing each time)

Figure 4.1: Demonstrating the need for the piecewise constant subspace change model. The black
circles plot is for subspace changing at each time t, while the red squares one is for piecewise
constant subspace change, with change occurring at t = t1. The data is generated so that, in
both experiments, SE(P(t1),P(0)) is the same. In the piecewise constant case (red squares), we can
achieve near perfect subspace recovery. But this is not possible in the “changing at each time”
(black circles) case. For details, see Sec. 4.5 and Fig. 4.3(c).

One way to ensure subspaces’ identifiability is to assume that they are piecewise constant with

time, i.e., that

P(t) = Pj for all t ∈ [tj , tj+1), j = 1, 2, . . . , J.

with tj+1− tj ≥ r. Let t0 = 1 and tJ+1 = d. This ensures that at least r n-dimensional data vectors

yt are available (this is the minimum needed to compute the subspace even if perfect data yt = `t

were available). The tj ’s are the subspace change times. With this model, rL ≤ rJ . When the

above model is not assumed, one cannot track to any desired accuracy, see the black circles plot in

Fig. 4.1. This is because the subspace change at each time can be interpreted as a r-dimensional

piecewise constant subspace change plus noise. To understand this precisely, consider the first α

frames, for any α ≥ r. Let P be the matrix of top r left singular vectors of [P(0),P(1), . . . ,P(α−1)].

Then, in this interval, yt := PΩt(P(t)at) can be rewritten as yt = PΩt(P (P ′P(t)at)) + vt where

vt = PΩt(P(t)at − P (P ′P(t))at). A similar argument can be extended to any set of α frames.

As explained in earlier work on MC [15, 8, 42], one way to ensure that L is not sparse is to assume

that its left and right singular vectors are dense. This is the well-known incoherence or denseness

assumption. Left singular vectors incoherent is nearly equivalent to imposing µ-incoherence of the

157

Pj ’s with µ being a numerical constant. As explained in [33, Remark 2.4], the following assumption

on at’s is similar to right incoherence, and hence we call it “statistical right incoherence”.

Definition 4.57 (Statistical Right Incoherence). We assume that the at’s are zero mean, i.e.,

E[at] = 0; are mutually independent over time; have identical diagonal covariance matrix Λ, i.e.,

that E[atat
′] = Λ with Λ diagonal; and are element-wise bounded. Element-wise bounded means that

there exists a numerical constant µ ≥ 1, such that maxi maxt(at)
2
i ≤ µmaxt λmax(E[atat

′]). This

implies that the at’s are sub-Gaussian with sub-Gaussian norm bounded by µmaxt λmax(E[atat
′]) =

µλmax(Λ). A simple example of element-wise bounded random vectors (r.v) is uniform r.v.s.

Motivated by the Robust PCA literature [36], one way to ensure that the missing entries are

spread out is to bound the maximum fraction of missing entries in any row and in any column.

We use max-miss-frac-row and max-miss-frac-col to denote these. Since NORST-miss is a mini-

batch approach that works on batches of α frames, we actually need to bound the maximum

fraction of missing entries in any sub-matrix of L with α consecutive columns. We denote this by

max-miss-frac-rowα. We precisely define these below.

Definition 4.58 (max-miss-frac-col,max-miss-frac-rowα). For a discrete time interval, J , let

γ(J) := max
i=1,2,...,n

1

|J |
∑
t∈J

1{i∈Tt}

where 1S is the indicator function for statement S. Thus,
∑

t∈J 1{i∈Tt} counts the maximum

number of missing entries in row i of the sub-matix LJ of the data matrix L := [`1, `2, . . . , `d].

So, γ(J) is the maximum fraction of missing entries in any row of LJ . Let J α denote a time

interval of duration α. Then, max-miss-frac-rowα := maxJ α⊆[1,d] γ(J α). Also, max-miss-frac-col :=

maxt |Tt|/n.

4.2 The NORST-miss algorithm and guarantees

We explain the basic algorithm next. We give and discuss the guarantee for the noise-free

vt = 0 case in Sec. 4.2.2. The corollary for the noisy case is given in Sec. 4.2.3. Extensions of basic

NORST-miss are given in Sec. 4.2.4.

158

4.2.1 NORST-miss algorithm

The complete psedo-code for our algorithm is provided in Algorithm 8. After initialization, the

algorithm iterates between a projected Least Squares (LS) step and a Subspace Update (including

Change Detect) step. Broadly, projected LS estimates the missing entries of `t at each time t.

Subspace update toggles between the “update” phase and the change “detect” phase. In the

update phase, it improves the estimate of the current subspace using a short mini-batch of “filled

in” versions of `t. In the detect phase, it uses these to detect subspace change.

Initialization: The algorithm starts in the “update” phase and with zero initialization: P̂0 ←

0n×r. For the first α frames, the projected LS step (explained below) simply returns ˆ̀
t = yt. Thus,

a simpler way to understand the initialization is as follows: wait until t = α and then compute the

first estimate of span(P0) as the r-SVD (matrix of top r left singular vectors) of [y1,y2, . . .yα]. This

step is solving a PCA with missing data problem which, as explained in [45], can be interpreted as

a problem of PCA in sparse data-dependent noise. Because we assume that the number of missing

entries at any time t is small enough, and the set of missing entries changes sufficiently over time2,

we can prove that this step gives a good first estimate of the subspace.

Projected LS: Recall that NORST-miss is a modification of NORST for robust ST from [33].

In robust ST, sudden subspace changes cannot be detected because these are confused for outliers.

Its projected-LS step is thus deigned using a slow (small) subspace change assumption. However,

as we will explain later, for the current missing data setting, it also works in case of sudden changes.

Suppose that the previous subspace estimate, P̂(t−1), is a “good enough” estimate of the previous

subspace P(t−1). Under slow subspace change, it is valid to assume that span(P(t−1)) is either

equal to or close to span(P(t)). Thus, under this assumption, it is a good idea to project yt onto

the orthogonal complement of P̂(t−1) because this will nullify most of `t, i.e., the not-nullified

part of `t, bt := Ψ`t, will be small. Here Ψ := I − P̂(t−1)P̂(t−1)
′. Using this idea, we compute

ỹt := Ψyt = ΨTtzt+bt+Ψvt. Estimating zt can be interpreted as a LS problem minz ‖ỹt−ΨTtz‖2.

2Equivalently, we bound the maximum number of missing entries in any column and in any row of the data matrix

159

Solving this gives

ẑt =
(
ΨTt

′ΨTt
)−1

ΨTt
′ỹt. (4.3)

Next, we use to this to compute ˆ̀
t = yt−ITt ẑt. Observe that the missing entries zt are recoverable

as long as ΨTt is well-conditioned. A necessary condition for this is (n− r) > |Tt|. As we will see

later, a sufficient condition is |Tt| < cn/r because this ensures that the restricted isometry constant

(RIC) [6] of Ψ of level |Tt| is small.

In settings where span(P(t−1)) is not close to span(P(t)) (sudden subspace change), the above

approach still works. Of course, in this case, it is not any better (or worse) than re-initialization

to zero, because, in this case, ‖Ψ`t‖ is of the same order as ‖`t‖. We can use the same arguments

as those used for the initialization step to argue that the first subspace update works even in this

case.

Subspace Update: The ˆ̀
t’s are used for subspace update. In its simplest (and provably

correct) form, this is done once every α frames by r-SVD on the matrix formed by the previous

α ˆ̀
t’s. Let t̂j be the time at which the j-th subspace change is detected (let t̂0 := 0). For each

k = 1, 2, . . . ,K, at t = t̂j + kα − 1, we compute the r-SVD of L̂t;α to get P̂j,k (k-th estimate of

subspace Pj). After K such updates, i.e., at t = t̂j +Kα − 1 := t̂j,fin the update is complete and

the algorithm enters the “detect” phase. Each update step is a PCA in sparse data-dependent noise

problem. This allows us to use the result from [45] to show that, as long as the missing entries’

set changes enough over time (max-miss-frac-rowα is bounded for each interval), each update step

reduces the subspace recovery error to 0.3 times its previous value. Thus, by setting K = C log(1/ε),

one can show that, after K updates, the subspace is recovered to ε accuracy.

Subspace change detect: To simply understand the detection strategy, assume that the

previous subspace Pj−1 has been estimated to ε accuracy by t = t̂j−1,fin = t̂j−1 + Kα − 1 and

denote it by P̂j−1 := P̂j−1,K . Also assume that vt = 0. At every t = t̂j−1,fin+uα−1, u = 1, 2, . . . ,

we detect change by checking if the maximum singular value of the matrix (I − P̂j−1P̂j−1
′)L̂t;α is

above a pre-set threshold,
√
ωevalsα, or not. This works because, if the subspace has not changed,

this matrix will have all singular values of order ε
√
λ+. If it has changed, its largest singular value

160

will be at least SE(Pj−1,Pj)
√
λ−. By picking ε small enough, one can ensure that, whp, all changes

are detected.

NORST-miss-smoothing for MC: The above is the tracking/online/filtering mode of

NORST-miss. It outputs an estimate of `t as soon as a new measurement vector yt arrives and

an estimate of the subspace every α frames. Notice that, order-wise, α is only a little more than

r which is the minimum delay needed to compute the subspace even if perfect data yt = `t were

available. Once an ε-accurate estimate of the current subspace is available, one can improve all

past estimates of `t to ensure that all estimates are ε-accurate. This is called the smoothing mode

of operation. To be precise, this is done as given in line 25 of Algorithm 8. This allows us to get a

completed matrix L̂ with all columns being ε-accurate.

Memory Complexity: In online or filtering mode, NORST-miss needs α = O(r log n) frames

of storage. In smoothing mode, it needs O((K + 2)α) = O(r log n log(1/ε)) frames of memory.

Therefore its memory complexity, even in the smoothing mode, is just O(nr log n log(1/ε)). Thus,

it provides a nearly memory-optimal mini-batch solution for MC.

Algorithm parameters: The algorithm has 4 parameters: r, K, α, and ωevals. Theoretically

these are set as follows: assume that r, λ+, λ− are known and pick a desired recovery error ε. Set

α = C1f
2r log n with f = λ+/λ−, K = C2 log(1/ε) and ωevals = cλ− with c a small constant. We

explain practical approaches in Sec 4.5.

4.2.2 Main Result: noise-free ST-miss and MC

First, for simplicity, consider the noise-free case, i.e., assume vt = 0. Let ∆j := SE(Pj−1,Pj).

Theorem 4.59 (NORST-miss, vt = 0 case). Consider Algorithm 8. Let α := Cf2r log n, Λ :=

E[a1a1
′], λ+ := λmax(Λ), λ− := λmin(Λ), f := λ+/λ−.

Pick an ε ≤ min(0.01, 0.03 minj SE(Pj−1,Pj)
2/f). Let K := C log(1/ε). If

1. left and statistical right incoherence: Pj’s are µ-incoherent and at’s satisfy statistical right

incoherence (Definition 4.57);

2. max-miss-frac-col ≤ c1
µr , max-miss-frac-rowα ≤ c2

f2 ;

161

3. subspace change: assume tj+1 − tj > Cr log n log(1/ε);

4. at’s are independent of the set of missing entries Tt;

then, with probability (w.p.) at least 1− 10dn−10,

1. subspace change is detected quickly: tj ≤ t̂j ≤ tj + 2α,

2. the subspace recovery error satisfies

SE(P̂(t),P(t)) ≤


(ε+ ∆j) if t ∈ J1,

(0.3)k−1(ε+ ∆j) if t ∈ Jk,

ε if t ∈ JK+1.

3. and ‖ ˆ̀
t − `t‖ ≤ 1.2(SE(P̂(t),P(t)) + ε)‖`t‖.

Here J0 := [tj , t̂j + α), Jk := [t̂j + kα, t̂j + (k + 1)α) and JK+1 := [t̂j + (K + 1)α, tj+1) and

∆j := SE(Pj−1,Pj).

The memory complexity is O(nr log n log(1/ε)) and the time complexity is O(ndr log(1/ε)).

Corollary 4.60 (NORST-miss for MC). Under the assumptions of Theorem 4.59, NORST-miss-

smoothing (line 25 of Algorithm 8) satisfies ‖ ˆ̀
t− `t‖ ≤ ε‖`t‖ for all t. Thus, ‖L̂−L‖F ≤ ε‖L‖F .

The proof is similar to that given in [33] for the correctness of NORST for robust ST. Please

see the Appendix for the changes.

For the purpose of this discussion, we treat the condition number f and the incoherence param-

eter µ as constants. The above result proves that NORST-miss tracks piecewise constant subspaces

to ε accuracy, within a delay that is near-optimal, under the following assumptions: left and “sta-

tistical” right incoherence holds; the fraction of missing entries in any column of L is O(1/r) while

that in any row (of α-consecutive column sub-matrices of it) is O(1). Moreover, “smoothing mode”

NORST-miss returns ε-accurate estimates of each `t and thus also solves the MC problem. Even

in this mode, it has near-optimal memory complexity and is order-wise as fast as vanilla PCA.

The above result is the first complete guarantee for ST-miss. Also, unlike past work, it can deal

162

with piecewise constant subspaces while also automatically reliably detecting subspace change with

a near-optimal delay.

Consider the total number of times a subspace can change, J . Since we need the subspace to

be constant for at least (K+3)α frames, J needs to satisfy J(K+3)α ≤ d. Since we need (K+3)α

to be at least Cr log n log(1/ε), this means that J must satisfy

J ≤ c d

r log n log(1/ε)
.

This, in turn, implies that the rank of the entire matrix, rL, can be at most‘

rL = rJ ≤ c d

log n log(1/ε)
.

Observe that this upper bound is nearly linear in d. This is what makes our corollary for MC

interesting. It implies that we can recover L to ε accuracy even in this nearly linearly growing rank

regime, of course only if the subspace changes are piecewise constant with time and frequent enough

so that J is close to its upper bound. In contrast, existing MC guarantees, these require left and

right incoherence of L and a Bernoulli model on observed entries with observation probability m/nd

where m is the required number of observed entries on average. The convex solution [42] needs

m = CnrL log2 n while the best non-convex solution [11] needs m = Cnr2
L log2 n observed entries.

The non-convex approach is much faster, but its required m depends on r2
L instead of rL in the

convex case. See Sec. 4.3 for a detailed discussion, and Table 4.3 for a summary of it. On the other

hand, our missing fraction bounds imply that the total number missing entries needs to at most

min(nd ·max-miss-frac-row, dn ·max-miss-frac-col) = cndr , or that we need at least m = (1− c/r)nd

observed entries.

If subspace changes are infrequent (J is small) so that rL ≈ r � d, our requirement on observed

entries is much stronger than what existing MC approaches need. However, suppose that J equals

its allowed upper bound so that rL = c d
logn log(1/ε) ; but r is small, say r = log n. In this setting,

we need nd(1 − c/ log n) while the convex MC solution needs cn d
logn log(1/ε) log2 n = cnd logn

log(1/ε) .

If ε = 1/n, this is c · nd, if ε is larger, this is even larger than c · nd. Thus, in this regime,

our requirement on m is only a little more stringent. Our advantage is that we do not require a

163

Bernoulli (or any probability) model on the observed entries’ set and our approach is much faster,

memory-efficient, and nearly delay-optimal. This is true both theoretically and in practice; see

Tables 4.3 and 4.6. If we consider non-convex MC solutions, they are much faster, but they cannot

work in this nearly linear rank regime at all because they will need Cnd2/ log2 n observed entries,

which is not possible.

A possible counter-argument to the above can be: what if one feeds smaller batches of data to

an MC algorithm. Since the subspace change times are not known, it is not clear how to do this.

One could feed in batches of size Kα which is the memory size used by NORST-miss-smoothing.

Even in this case the discussion is the same as above. To simplify writing suppose that ε = 1/n.

The convex solution will need m = cn(Cr log2 n) observed entries for a matrix of size n×(Cr log2 n).

Thus m required is again linear in the matrix size. NORST-miss-smoothing will need this number

to be (1 − c/r)n(Cr log2 n) which is again only slightly worse when r is small. The non-convex

methods will again not work.

The Bernoulli model on the observed entries’ set can often be an impractical requirement.

For example, erasures due to transmission errors or image/video degradation often come in bursts.

Similarly video occlusions by foreground objects are often slow moving or occasionally static, rather

than being totally random. Our guarantee does not require the Bernoulli model but the tradeoff

is that, in general, it needs more observed entries. A similar tradeoff is observed in the robust

PCA literature. The guarantee of [7] required a uniform random or Bernoulli model on the outlier

supports, but tolerated a constant fraction of corrupted entries. In other words it needed the

number of uncorrupted entries to be at least c · nd. Later algorithms such as AltProj [36] did not

require any random model on outlier support but needed the number of un-corrupted entries to be

at least (1− c/r)nd which is a little more stringent requirement.

4.2.3 Main Result – ST-miss and MC with noise

So far we gave a result for ST-miss and MC in the noise-free case. A more practical model

is one that allows for small unstructured noise (modeling error). Our result also extends to this

164

case with one extra assumption. In the noise-free case, there is no real lower bound on the amount

of subspace change required for reliable detection. Any nonzero subspace change can be detected

(and hence tracked) as long as the previous subspace is recovered to ε accuracy with ε small enough

compared to the amount of change. If the noise vt is such that its maximum covariance in any

direction is smaller than ε2λ−, then Theorem 4.59 and Corollary 4.60 hold with almost no changes.

If the noise is larger, as we will explain next, we will need the amount of subspace change to be

larger than the noise-level. Also, we will be able to track the subspaces only up to accuracy equal

to the noise level.

Suppose that the noise vt is bounded. Let λ+
v := ‖E[vtvt

′]‖ be the noise power and let rv :=

maxt ‖vt‖2/λ+
v be the effective noise dimension. Trivially, rv ≤ n. To understand things simply,

first suppose that the subspace is fixed. If the noise is isotropic (noise covariance is a multiple of

identity), then, as correctly pointed out by an anonymous reviewer, one can achieve noise-averaging

in the PCA step by picking α large enough: it needs to grow as 3 n(λ+
v /λ

−)/ε2. Isotropic noise is

the most commonly studied setting for PCA, but it is not the most practical. In the more practical

non-isotropic noise case, it is not even possible to achieve noise-averaging by increasing α. In this

setting, with any choice of α, the subspace can be recovered only up to the noise level, i.e., we can

only achieve recovery accuracy cλ+
v /λ

−. If we are satisfied with slightly less accurate estimates,

i.e., if we set ε = c

√
λ+
v
λ− , and if the effective noise dimension rv = Cr, then the required value of

α does not change from what it is in Theorem 4.59. Now consider the changing subspace setting.

We can still show that we can detect subspace changes that satisfy 0.03 minj SE(Pj−1,Pj)
2/f ≥ ε,

but now ε = c

√
λ+
v
λ− . This imposes a non-trivial lower bound on the amount of change that can be

detected. The above discussion is summarized in the following corollary.

Corollary 4.61 (ST-miss and MC with vt 6= 0). Suppose that vt is bounded, mutually independent

and identically distributed (iid) over time, and is independent of the `t’s. Define λ+
v := ‖E[vtvt

′]‖

and rv := maxt ‖vt‖2
λ+
v

.

3α needs to grow as C min(rv logn, n)(λ+
v /λ

−)/ε2; for the isotropic case, rv = n and thus the discussion follows.

165

• If rv = Cr and λ+
v ≤ cε2λ−, then the results of Theorem 4.59 and Corollary 4.60 hold without

any changes.

• For a general λ+
v , we have the following modified result. Suppose that rv = Cr,

minj SE(Pj−1,Pj)
2 ≥ Cf

√
λ+
v
λ− , and conditions 1, 2, 3 of Theorem 4.59 hold. Then all con-

clusions of Theorem 4.59 and Corollary 4.60 hold with ε = c

√
λ+
v
λ− .

• For a general rv, if we set α = Cf2 max(r log n,min(n, rv log n)) then the above conclusions

hold.

If the noise is isotropic, the next corollary shows that we can track to any accuracy ε by

increasing the value of α. It is not interesting from a tracking perspective because its required

value of α is much larger. However, it provides a result that is comparable to the result for

streaming PCA with missing data from [32] that we discuss later.

Corollary 4.62 (ST-miss and MC, isotropic noise case). If the noise vt is isotropic (so that rv = n),

then, for any desired recovery error level ε, if α = Cn
λ+
v
λ−
ε2

, and all other conditions of Theorem 4.59

hold, then all conclusions of Theorem 4.59 and Corollary 4.60 hold.

We should mention here that the above discussion and results assume that PCA is solved via

a simple SVD step (compute top r left singular vectors). In the non-isotropic noise case, if its

covariance matrix were known (or could be estimated), then one can replace simple SVD by pre-

whitening techniques followed by SVD, in order to get results similar to the isotropic noise case,

e.g., see [29].

4.2.4 Extensions of basic NORST-miss

Sample-Efficient-NORST-miss. This is a simple modification of NORST-miss that will

reduce its sample complexity. The reason that NORST-miss needs many more observed entries

is because of the projected LS step which solves for the missing entries vector, zt, after project-

ing yt orthogonal to P̂(t−1). This step is computing the pseudo-inverse of (I − P̂(t−1)P̂(t−1)
′)Tt .

Our bound on max-miss-frac-col helps ensure that this matrix is well conditioned for any set

166

Tt of size at most max-miss-frac-col · n. Notice however that we prove that NORST-miss re-

covers Pj to ε accuracy with a delay of just (K + 2)α = Cr log n log(1/ε). Once the subspace

has been recovered to ε accuracy, there is no need to use projected LS to recover zt. One just

needs to recover at given a nearly perfect subspace estimate and the observed entries. This

can be done more easily as follows (borrows PETRELS idea): let P̂(t) ← P̂(t−1), solve for at

as ât := (IΩt
′P̂(t))

†IΩt
′yt, and set ˆ̀

t ← P̂(t)ât. Recall here that Ωt = Ttc. If the set of ob-

served or missing entries was i.i.d. Bernoulli for just the later time instants, this approach will

only need Ω(r log r log2 n) samples at each time t, whp. This follows from [2, Lemma 3]. Sup-

pose that ε = 1/n, then Kα = Cr log2 n. Let dj := tj+1 − tj denote the duration for which

the subspace is Pj . Thus
∑

j dj = d. Also recall that rL ≤ rJ . Thus, with this approach, the

number of observed entries needed is m = Ω
(∑J

j=1

(
n(1− c/r)Kα+ Cr log r log2 n(dj −Kα)

))
=

Ω
(∑

j [n(1− c/r)r log2 n+ djr log r log2 n]
)

= Ω(max(n, d)rL log2 n(log r− c/r)) as long as the ob-

served entries follow the i.i.d. Bernoulli model for the time after the first Kα time instants after a

subspace change. Or, we need the observed entries to be i.i.d. Bernoulli(1−c/r) for first Kα frames

and i.i.d. Bernoulli(r log2 n log r/n) afterwards. Observe that the m needed by sample-efficient-

NORST-miss is only (log r− c/r) times larger than the best sample complexity needed by any MC

technique - this is the convex methods (nuclear norm min). However sample-efficient-NORST-miss

is much faster and memory-efficient compared to nuclear norm min.

NORST-sliding-window. In the basic NORST approach we use a different set of estimates

ˆ̀
t for each subspace update step. So, for example, the first subspace estimate is computed at

t̂j +α− 1 using L̂t̂j+α−1;α; the second is computed at t̂j + 2α− 1 using L̂t̂j+2α−1;α; and so on. This

is done primarily to ensure mutual independence of the set of `t’s in each interval because this is

what makes the proof easier (allows use of matrix Bernstein for example). However, in practice,

we can get faster convergence to an ε-accurate estimate of Pj , by removing this restriction. This

approach is of course motivated by the sliding window idea that is ubiquitous in signal processing.

For any sliding-window method, there is the window length which we keep as α and the hop-length

which we denote by β.

167

Thus, NORST-sliding-window (β) is Algorithm 8 with the following change: compute P̂j,1 using

L̂t̂j+α−1;α; compute P̂j,2 using L̂t̂j+α+β−1;α; compute P̂j,3 using L̂t̂j+α+2β−1;α; and so on. Clearly

β < α and β = α returns the basic NORST-miss.

NORST-buffer. Another question if we worry only about practical performance is whether

re-using the same α data samples yt in the following way helps: At t = t̂j+kα−1, the k-th estimate

is improved R times as follows. First we obtain L̂t;α := [ˆ̀t−α+1, ˆ̀
t−α+2, . . . ˆ̀

t] which are used to

compute P̂j,k via r-SVD. Let us denote this by P̂ 0
j,k. Now, we use this estimate to obtain a second,

and slightly more refined estimate of the same Lt;α. We denote these as L̂
(1)
t;α and use this estimate

to get P̂
(1)
j,k . This process is repeated for a total of R+1 (reuse) times. We noticed that using R = 4

suffices in most synthetic data experiments and for real data, R = 0 (which reduces to the basic

NORST algorithm) suffices. This variant has the same memory requirement as NORST-original.

The time complexity, however, increases by a factor of R+ 1.

4.3 Detailed discussion of prior art

Streaming PCA with missing data, complete guarantee. The problem of streaming

PCA with missing data was studied and a provable approach called modified block power method

(MBPM) was introduced in [32]. A similar problem called “subspace learning with partial infor-

mation” is studied in [20]. These give the following complete guarantee.

Theorem 4.63 (streaming PCA, missing data [32, 20]). Consider a data stream, for all t =

1, · · · , d, `t = Azt + wt where zt are r length vectors generated i.i.d from a distribution D s.t.

E[(zt)i] = 0 and E[(zt)
2
i] = 1 and A is an n× r matrix with SVD A = UΛV ′ with λ1 = 1 ≥ λ2 ≥

· · ·λr = λ− > 0. The noise wt is bounded: |(wt)i| ≤ M∞, and E[(wt)
2
i] = σ2. Assume that (i) A

is µ-incoherent; and (ii) we observe each entry of `t independently and uniformly at random with

probability ρ; this is the Bernoulli(ρ) model. If d ≥ α with α :=

Ω

M2
∞(rµ2/n+ σ2 + nr2(µ2/n+ σ2)2)(log n)2 log(1/ε)

log
(
σ2+0.75λ−

σ2+0.5λ−

)
(λ−)2ε2ρ2


then, SE(P̂(d),U) ≤ ε w.p. at least 0.99.

168

There are many differences between this guarantee and ours: (i) it only recovers a single

unknown subspace (since it is solving a PCA problem), and is unable to detect or track changes

in the subspace; (ii) it requires the missing entries to follow the i.i.d. Bernoulli model; and (iii)

it only provides a guarantee that the final subspace estimate, P̂(d), is ε-accurate (it does not say

anything about the earlier estimates). (iv) Finally, even with setting σ2 = ε2λ− in the above

(to simply compare its noise bound with ours), the required lower bound on d implied by it is

d ≥ Cr2 log2 n log(1/ε)/ρ2. This is r log n times larger than what our result requires. The lower

bound on d can be interpreted as the tracking delay in the setting of ST-miss. The Bernoulli model

on missing entries is impractical in many settings as discussed earlier in Sec. 4.2.2. On the other

hand, MBPM is streaming as well as memory-optimal while our approach is not streaming and

only nearly memory optimal. For a summary, see Table 4.2. Here “streaming” means that it needs

only one pass over the data. Our approach uses SVD which requires multiple passes over short

batches of data of size of order r log n.

ST-miss, partial guarantees. In the ST literature, there are three well-known algorithms

for ST-miss: PAST [48, 49], PETRELS [12] and GROUSE [3, 4, 53, 38]. All are motivated by

stochastic gradient descent (SGD) to solve the PCA problem and the Oja algorithm [37]. These

and many others are described in detail in a review article on subspace tracking [1]. GROUSE can

be understood as an extension of Oja’s algorithm on the Grassmanian. It is a very fast algorithm

since it only involves first order updates. It has been studied in [3, 4, 53]. The best partial guarantee

for GROUSE rewritten in our notation is as follows.

Theorem 4.64 (GROUSE [4] (Theorem 2.14)). Assume that the subspace is fixed, i.e., that P(t) =

P for all t. Denote the unknown subspace by P . Let εt :=
∑r

i=1 sin2 θi(P̂(t),P) where θi is the

i-th largest principal angle between the two subspaces. Also, for a vector z ∈ Rn, let µ(z) := n‖z‖2∞
‖z‖22

quantify its denseness. Assume that (i) P is µ-incoherent; (ii) the coefficients vector at is drawn

independently from a standard Gaussian distribution, i.e., (at)i
i.i.d.∼ N (0, 1); (iii) the size of the

set of observed entries at time t, Ωt, satisfies |Ωt| ≥ (64/3)r(log2 n)µ log(20r); and the following

assumptions on intermediate algorithm estimates hold:

169

• εt ≤ min(rµ16n ,
q2

128n2r
);

• the residual at each time, rt := `t − P̂(t)P̂
′
(t)`t is “dense”, i.e., it satisfies

µ(rt) ≤ min{log n[0.045log 10C1rµ log(20r)]0.5, log2 n 0.05
8 log 10C1 log(20r)} with probability at least 1 − δ̄

where δ̄ ≤ 0.6.

Then, E[εt+1|εt] ≤ εt − .32(.6− δ̄) q
nr εt + 55

√
n
q ε

1.5
t .

Observe that the above result makes a denseness assumption on the residual rt and the residual

is a function of P̂(t). Thus it is making assumptions on intermediate algorithm estimates and hence

is a partial guarantee.

In follow-up work, the PETRELS [12] approach was introduced. It is slower than GROUSE,

but has much better performance in numerical experiments. To understand the main idea of

PETRELS, let us ignore the small noise vt. Then, yt can be expressed as yt = IΩtIΩt
′`t =

IΩtIΩt
′P(t)at. Let P̃ := P(t). If P̃ were known, one could compute at by solving a LS problem to

get ât := (IΩt
′P̃)†IΩt

′yt. This of course implicitly assumes that IΩt
′P̃ is well-conditioned. This

matrix is of size (n− |Tt|)× r, thus a necessary condition for it to be well conditioned is the same

as the one for NORST-miss: it also needs n− |Tt| ≥ r although the required sufficient condition is

different4. Of course P̃ is actually unknown. PETRELS thus solves for P̃ by solving the following

min
P̃

t∑
m=1

λt−m‖ym − IΩmIΩm
′P̃ (IΩm

′P̃)†IΩm
′ym‖2.

Here M † := (M ′M)−1M ′ and λ is the discount factor (set to 0.98 in their code). To solve this

efficiently, PETRELS first decomposes it into updating each row of P̃ , and then parallely solves

the n smaller problems by second-order SGD.

The best guarantee for PETRELS from [47] is summarized next.

Theorem 4.65 (PETRELS [47](Theorem 2)). Assume that the subspace is fixed, i.e., that P(t) = P

for all t. Assume that (i) the set of observed entries are drawn from the i.i.d. Bernoulli model

4If Ωt follows an i.i.d. Bernoulli model, a sufficient condition would be n−|Tt| ≥ Cr log r log2 n [2], or equivalently,
max-miss-frac-col ≤ 1− (Cr log r log2 n)/n.

170

with parameter ρ; (ii) the coefficients (at)’s are zero-mean random vectors with diagonal covari-

ance Λ and all higher-order moments finite; (iii) the noise, vt are i.i.d and independent of at;

(iv) the subspace P and the initial estimate P̂0 satisfies the following incoherence assumption∑n
i=1

∑r
j=1(P)4

ij ≤ C
n , and

∑n
i=1

∑r
j=1(P̂0)4

ij ≤ C
n ; (v) the step-size is appropriately chosen; and

(v) the initialization satisfies E
[
‖Q(n)

0 −Q(0)‖2
]
≤ C√

n
. Here Q

(n)
0 := P̂0

′P denotes the matrix

of initial cosine similarities and Q(τ) is the “scaling limit” which is defined as the solution of the

following coupled ordinary differential equations:

d

dτ
Q(τ) =[ρΛ2Q(τ)− 1/2Q(t)G(τ)−

Q(τ)(I − 1/2G(τ))Q′(τ)ρΛ2Q(τ)]G(τ)

d

dτ
G(τ) =G(τ)[µ−G(τ)(G(τ) + I)(Q′(τ)ρΛ2Q(τ) + I)]

where ρ is the subsampling ratio and µ = n(1−λ) where λ is the discount parameter defined earlier.

Then, for any fixed d > 0, the time-varying cosine similarity matrix Q
(n)
bnτc = P̂(bnτc)

′P satisfies

supn≥1 E
[
‖Q(n)
bnτc −Q(τ)‖

]
≤ Cd√

n
.

For further details, please refer to [47, Eq’s 29, 33, 34]. The above is a difficult result to further

simplify since, even for r = 1, it is not possible to obtain a closed form solution of the above

differential equation. This is why it is impossible to say what this result says about SE(P̂(t),P) or

any other error measure. Hence the above is also a partial guarantee. [47] also provides a guarantee

for GROUSE that has a similar flavor to the above result.

Online MC, different model. There are a few works with the term online MC in their title

and a reader may wrongly confuse these as being solutions to our problem. All of them study very

different “online” settings than ours, e.g., [25] assumes one matrix entry comes in at a time. The

work of [27] considers a problem of designing matrix sampling schemes based on current estimates

of the matrix columns. This is useful only in settings where one is allowed to choose which samples

to observe. This is often not possible in applications such as video analytics.

MC. There has been a very large amount of work on provable MC. We do not discuss everything

here since MC is not the main focus of this work. The first guarantee for MC was provided in

171

[15]. This studied the nuclear norm minimization (NNM) solution. After NNM, there has been

much later work on non-convex, and hence faster, provable solutions: alternating-minimization,

e.g., [26, 35, 43, 21], and projected gradient descent (proj GD), e.g., [23, 18, 17] and alternating-

projection [24, 28]. All these works assume a uniform random or i.i.d. Bernoulli model on the

set of missing entries (both are nearly equivalent for large n, d). There has been some later work

that relaxes this assumption. This includes [9, 16] which assumes independent but not identical

probability of the (i,j)-th entry being missed. The authors allow this probability to be inversely

proportional to row and column “leverage scores” (quantifies denseness of a row or a column of

L) and hence allows the relaxing of the incoherence requirement on L. If leverage scores were

known, one could sample more frequently from rows or columns that are less dense (more sparse).

Of course it is not clear how one could know or approximate these scores. There is also work

that assumes a completely different probabilistic models on the set of observed entries, e.g., [5]. In

summary, all existing MC works need a probabilistic model on the set of observed (equivalently,

missed) entries, typically i.i.d. Bernoulli. As noted earlier this can be an impractical requirement in

some applications. Our work does not make any such assumption but needs more observed entries,

a detailed discussion of this is provided earlier.

NORST for robust ST [33]. While both the NORST-miss algorithm and guarantee are

simple modifications of those for NORST for robust ST, our current result has two important

advantages because it solves a simpler problem than robust ST. Since there are no outliers, there

is no need for the amount of subspace change or the initial estimate’s accuracy to be smaller than

the outlier magnitude lower bound. This was needed in the robust ST case to obtain an estimate

of the outlier support Tt. Here, this support is known. This is why NORST-miss has the following

two advantages. (i) It works with a zero initialization where as NORST (for robust ST) required a

good enough initialization for which AltProj or PCP needed to be applied on an initial short batch

of observed data. (ii) It does not need an upper bound on the amount of subspace change at each

tj , it allows both slow and sudden changes.

172

4.4 Robust ST with missing entries

Robust ST with missing entries (RST-miss) is a generalization of robust ST and of ST-miss. In

this case, we observe n-dimensional data vectors that satisfy

yt = PΩt(`t + gt) + vt, for t = 1, 2, . . . , d. (4.4)

where gt’s are the sparse outliers. Let xt := PΩt(gt). We use Tsparse,t to denote the support of xt.

This is the part of the outliers that actually corrupt our measurements, thus in the sequel we will

only work with xt. With xt defined as above, yt can be expressed as

yt = PΩt(`t) + xt + vt (4.5)

Observe that, by definition, xt is supported outside of Tt and hence Tt and Tsparse,t are disjoint.

Defining the n× d matrix L := [`1, `2, . . . `d], the above is a robust MC problem.

The main modification needed in this case is outlier support recovery. The original NORST

for robust ST [33] used l1 minimization followed by thresholding based support recovery for this

purpose. In this case, the combined sparse vector is x̃t := xt − ITtITt
′`t. Support recovery in

this case is thus a problem of sparse recovery with partial support knowledge Tt. In this case,

we can still use l1 minimization followed by thresholding. However a better approach is to use

noisy modified-CS [44, 52] which was introduced to exactly solve this problem. We use the latter.

The second modification needed is that, just like in case of robust ST, we need an accurate sub-

space initialization. To get this, we can use the approach used in robust ST [33]: for the initial

Cr log n log(1/ε) samples, use the AltProj algorithm for robust PCA (while ignoring the knowledge

of Tt for this initial period). We summarize the approach in Algorithm 9.

We have the following guarantee for NORST-miss-robust. Let max-outlier-frac-rowα be the

maximum fraction of outliers per row of any sub-matrix of X with α consecutive columns;

max-outlier-frac-col be the maximum fraction of outlier per column of X. Also define xmin :=

mint mini∈Tsparse,t |(xt)i| to denote the minimum outlier magnitude and let ∆ := maxj ∆j =

maxj SE(Pj−1,Pj).

173

Corollary 4.66. Consider Algorithm 9. Assume all conditions of Theorem 4.59 hold and

1. max-miss-frac-col + 2 · max-outlier-frac-col ≤ c1
µr ; and max-miss-frac-rowα +

max-outlier-frac-rowα ≤ c2
f2 ;

2. subspace change:

(a) tj+1 − tj > (K + 2)α, and

(b) ∆ ≤ 0.8 and C1

√
rλ+(∆ + 2ε) ≤ xmin

3. initialization satisfies SE(P̂0,P0) ≤ 0.25 and C1

√
rλ+SE(P̂0,P0) ≤ xmin;

then, all guarantees of Theorem 4.59 and Corollary 4.60 hold.

Remark 4.67 (Relaxing outlier magnitudes lower bound). As also explained in [33], the outlier

magnitude lower bound can be significantly relaxed. First, without any changes, if we look at the

proof, our required lower bound on outlier magnitudes is actually 0.3k−1
√
rλ+(∆ + 2ε) in interval k

of subspace update. To be precise, we only need mint∈Jk mini∈Tsparse,t |(xt)i| ≥ 0.3k−1
√
rλ+(∆ + 2ε).

Here Jk is the interval defined in Theorem 4.59. Thus, for t ∈ JK+1 (after the update step is

complete but the subspace has not changed), we only need mini∈Tsparse,t |(xt)i| ≥ ε
√
rλ+. Moreover,

this can be relaxed even more as explained in Remark 2.4 of [33].

The proof is similar to that given in [33]. Please see the Appendix for an explanation of the

differences. The advantage of using modified-CS to replace l1 min when recovering the outlier

support is that it weakens the required upper bound on max-miss-frac-col by a factor of two. If

we used l1 min, we would need 2 · (max-miss-frac-col + max-outlier-frac-col) to satisfy the upper

bound given in the first condition.

Comparison with existing work. Existing solutions for robust ST-miss include GRASTA

[22], APSM [13] and ROSETA [31]. APSM comes with a partial guarantee, while GRASTA and

ROSETA do not have a guarantee. The first few provable guarantees for robust MC were [7, 10].

Both studied the convex optimization solution which was slow. Recently, there have been two other

works [50, 11] which are projected-GD based approaches and hence are much faster. These assume

174

1,000 2,000

−15

−10

−5

0

Number of Samples (t)

lo
g

1
0

(S
E

(P̂
(t

),
P

(t
))
)

(a) Moving Object Model (ρ = 0.8)

NORST-miss (1ms)

NORST-miss[R = 4] (9ms)

NORST-sliding[β = 1 R = 0] (7ms)

NORST-sliding[β = 10 R = 1] (11ms)

PETRELS (29ms)

0 1,000 2,000 3,000

Number of Samples (t)

(b) Bernoulli Model (ρ = 0.9)

NORST-miss (1ms)

NORST-sliding (13ms)

PETRELS (36ms)

GROUSE (2ms)

0 1,000 2,000 3,000

Number of Samples (t)

(c) Bernoulli(0.9) and Λt time-varying

NORST-miss (2.3ms)

PETRELS (36ms)

GROUSE (1.7ms)

Figure 4.2: We compare NORST-miss and its extensions with PETRELS and GROUSE. We plot
the logarithm of the subspace error between the true subspace P(t) and the algorithm estimates,

P̂(t) on the y-axis and the number of samples (t) on the x-axis. As can be seen, in the first two
cases, NORST-buffer and NORST-sliding have the best performance (while also being faster than
PETRELS), followed by PETRELS, basic NORST and then GROUSE. PETRELS performs best
in the scenario of time varying Λt. The computational time per sample (in milliseconds) for each
algorithm is mentioned in the legend.

an O(1/r) bound on outlier fractions per row and per column. All these assume that the set of

observed entries is i.i.d. Bernoulli.

Compared with these, our result needs slow subspace change and a lower bound on outlier

magnitudes; but it does not need a probabilistic model on the set of missing or outlier entries, and

improves the required upper bound on outlier fractions per row by a factor of r. Also, our result

needs more observed entries in the setting of rL ≈ r, but not when rL is significantly larger than r,

for example not when rL is nearly linear in d. A summary of this discussion is given in Table 4.4.

175

4.5 Experimental Comparisons

We present the results of numerical experiments on synthetic and real data5. All the codes

for our experiments are available at https://github.com/vdaneshpajooh/NORST-rmc. In this

section, we refer to NORST-miss as just NORST. All time comparisons are performed on a Desktop

Computer with Intel Xeon E3-1200 CPU, and 8GB RAM.

4.5.1 Parameter Setting for NORST

The algorithm parameters required for NORST are r, K, α and ωevals. For our theory, we

assume r, λ+, λ−, are known, and we pick a desired accuracy, ε. We set K = C log(1/ε), α =

Cf2r log n, and ωevals = 2ε2λ− with C being a numerical constant more than one. Experimentally,

the value of r needs to be set from model knowledge, however, overestimating it by a little does not

significantly affect the results. In most of our experiments, we set α = 2r (ideally it should grow as

r log n but since log n is very small for practical values of n it can be ignored). α should be a larger

multiple of r when either the data is quite noisy or when few entries are observed. We set K based

on how accurately we would like to estimate the subspace. The parameter ωevals needs to be set as

a small fraction of the minimum signal space eigenvalue. In all synthetic data experiments, we set

ωevals = 0.0008λ−. Another way to set ωevals is as follows. After Kα frames, we can estimate λ̂−

as the r-th eigenvalue of
∑t

τ=t−α+1
ˆ̀
τ

ˆ̀
τ
′/α and set ωevals = cλ̂− as mentioned before. We use the

Conjugate Gradient Least Squares (CGLS) method [39] for the LS step with tolerance as 10−16,

and maximum iterations as 20.

For the video experiments, we estimated r using training data from a few videos and fixed it as

r = 30. We let λ− be the r-th eigenvalue of the training dataset. We used ωevals = 1.6× 10−6λ− =

0.002, α = 2r and K = 3 for the video data. The reason that we use a smaller fraction of λ− as

ωevals is because videos are only approximately low-rank.

5We downloaded the PETRELS’ and GROUSE code from the authors’ website and all other algorithms from
https://github.com/andrewssobral/lrslibrary.

https://github.com/vdaneshpajooh/NORST-rmc
https://github.com/andrewssobral/lrslibrary

176

4.5.2 Fixed Subspace, Noise-free data

We generated the data according to (4.1) and set vt = 0. We assume a fixed subspace i.e. J = 1.

We generate the subspace basis matrix P ∈ Rn×r by ortho-normalizing the columns of a random

Gaussian matrix with n = 1000 and r = 30. The at’s (for t = 1, · · · , d and d = 4000) are generated

independently as (at)i
i.i.d∼ unif[−qi, qi] where qi =

√
f −
√
f(i− 1)/2r for i = 1, 2, · · · , r− 1 and

qr = 1. Thus, the condition number of Λ is f and we set f = 100.

For our first experiment, the observed entries’ set was i.i.d. Bernoulli with fraction of observed

entries ρ = 0.7. We compared all NORST extensions and PETRELS. We set the algorithm pa-

rameters for NORST and extensions as mentioned before and used K = 33 to see how low the

NORST error can go. For PETRELS we set max cycles = 1, forgetting parameter λ = 0.98 as

specified in the paper. We display the results in Table 4.5 (top). Notice that NORST-miss and its

extensions are significantly faster than PETRELS. Also, the β = 10, R = 1 is the best of all the

NORST extensions and is as good as PETRELS.

In our second set of experiments, we compared NORST (and a few extensions) with PETRELS

and GROUSE for three settings of missing data. For GROUSE, we set maximum cycles as 1 as

specified in the documentation and set the step size, η = 0.1 and the step-size is udpated according

to [53]. The first was for missing generated from the Moving Object model [34, Model 6.19] with

s = 200, and b0 = 0.05. This translates to ρ = 0.8 fraction of observed entries. This is an

example of a deterministic model on missing entries. We plot the subspace recovery error versus

time for this case in Fig. 4.2(a) As can be seen, NORST-buffer (R=4) and NORST-sliding-window

(β = 10, R = 4) have the best performance, followed by PETRELS, basic NORST, and then

GROUSE. PETRELS is the slowest in terms of time taken. In Fig. 4.2(b), we plot the results for

Bernoulli observed entries’ set with ρ = 0.9. Here again, NORST-sliding has the best performance.

Basic NORST is only slightly worse than PETRELS. As can be seen from the time taken (displayed

in the legend), NORST and its extensions are much faster than PETRELS.

In Fig. 4.2(c), as suggested by an anonymous reviewer, we evaluate the same case but with

the covariance matrix of `t being time-varying. We generate the at’s as described earlier but with

177

500 1,000 1,500
10−10

10−7

10−4

10−1

Number of Samples (t)

S
E

(P̂
(t

),
P

(t
))

(a) Piecewise Constant (Noisy)

NORST-miss (3.1ms) NORST-sliding (5.8ms) PETRELS (35ms) GROUSE (2.9ms)

0 1,000 2,000

Number of Samples (t)

(b) Piecewise Constant (Noise-Free)

500 1,000 1,500

Number of Samples (t)

(c) Subspace change at each time

Figure 4.3: Subspace error versus time plot for changing subspaces. We plot the SE(P̂(t),P(t)) on
the y-axis and the number of samples (t) on the x-axis. The entries are observed under Bernoulli
model with ρ = 0.9. The computational time taken per sample (in milliseconds) is provided in
the legend parenthesis. (a) Piecewise constant subspace change and noise-sensitivity:
Observe that after the first subspace change, NORST-sliding adapts to subspace change using
the least number of samples and is also ≈ 6x faster than PETRELS whereas GROUSE requires
more samples than our approach and thus is unable to converge to the noise-level (≈ 10−4); (b)
Piecewise Constant and noise-free: All algorithms perform significantly better since the data
is noise-free. We clip the y-axis at 10−10 for the sake of presentation but NORST and PETRELS
attain a recovery error of 10−14. (c) Subspace changes a little at each time: All algorithms
are able to track the span of top-r singular vectors of [P(t−α+1), · · · ,P(t)] to an accuracy of 10−4.
As explained, the subspace change at each time can be thought of as noise. GROUSE needs almost
2x number of samples to obtain the same accuracy as NORST while PETRELS is approximately
10x slower than both NORST and GROUSE.

qt,i =
√
f −
√
f(i − 1)/2r − λ−/2 for t = 2, 4, 6, · · · and qt,i =

√
f −
√
f(i − 1)/2r + λ−/2 for

t = 1, 3, 5, · · · and qt,r = 1. As can be seen all approaches still work in this case. PETRELS

converges with the fewest samples but is almost 18x slower.

4.5.3 Changing Subspaces, Noisy and Noise-free Measurements

Piecewise constant subspace change, noisy and noise-free: We generate the changing

subspaces using Pj = eγjBjPj−1 as done in [1] where γj controls the amount subspace change and

Bj ’s are skew-symmetric matrices. We used the following parameters: n = 1000, d = 10000, J = 6,

and the subspace changes after every 800 frames. The other parameters are r = 30, γj = 100 and the

178

matrices Bi are generated as Bi = (B̃i− B̃i
′) where the entries of B̃i are generated independently

from a standard normal distribution and at’s are generated as in the fixed subspace case. For

the missing entries supports, we consider the Bernoulli Model with ρ = 0.9. The noise vt’s are

generated as i.i.d. Gaussian r.v.’s with
√
λ+
v = 3× 10−3

√
λ−. The results are summarized in Fig.

4.3(a). For NORST we set α = 100 and K = 7. We observe that all algorithms except GROUSE

are able to attain final accuracy approximately equal to the noise-level, 10−3 within a short delay

of the subspace change. We also observe that NORST-sliding-window adapts to subspace change

using the fewest samples possible. Moreoever it is much faster than PETRELS.

In Fig. 4.3(b), we plot results for the above setting but with noise νt = 0. In this case, the

underlying subspace is recovered to accuracy lower than 10−12 by NORST and PETRELS but

GROUSE only tracks to error 10−7.

Subspace change at each time: Here we generate the data using the approach of [3]:

P(1) is generated by ortho-normalizing the columns of a i.i.d. Gaussian matrix and let P(t) =

eγBP(t−1). We set γ = 10−7. No extra noise vt was added, i.e., vt = 0, in this experiment. We plot

SE(P̂(t),P(t)) in Fig. 4.3(c). Notice that, even without added noise vt, all algorithms are only able

to track the subspaces to accuracy at most 10−3 in this case. The reason is, as explained earlier

in Sec. 4.1.3, subspace change at each time can be interpreted as r dimensional piecewise constant

subspace change plus noise.

4.5.4 Matrix Completion

In Table 4.6, we compare NORST-smoothing with existing MC solutions (for which code is

available). This table displays the Monte-Carlo mean of the normalized Frobenius norm error along

with time-taken per column displayed in parentheses. We compare two solvers for nuclear norm

min (NNM) – (i) Singular Value Thresholding (SVT) with maximum iterations as 500, tolerance

as 10−8, δ = 1.2/ρ, and τ = 5
√
nd and (ii) Inexact Augmented Lagrangian Multiplier (IALM)

[30] with maximum iterations 500 and tolerance 10−16. We also evaluate the projected Gradient

Descent (projected-GD) algorithm of [11], this is a non-convex and hence fast approach, with the

179

Original Corrupted NORST GROUSE PETRELS(10) IALM SVT
(7.5ms) (9ms) (1698ms) (45.5ms) (3238ms)

Figure 4.4: Background Recovery under Moving Object Model missing entries (ρ = 0.98). We
show the original, observed, and recovered frames at t = {980, 1000, 1020}. NORST and SVT are
the only algorithms that work although NORST is almost 3 orders of magnitude faster than SVT.
PETRELS(10) exhibits artifacts, while IALM and GROUSE do not capture the movements in the
curtain. The time taken per sample for each algorithm is shown in parenthesis.

best sample complexity among non-convex approaches. This seems to be the only provable non-

convex MC approach for which code is available. NORST-smoothing used K = 33 and α = 2r.

The matrix L was generated as described in Sec. 4.5.2 for the “fixed” subspace rows and as

in Sec. 4.5.3 (piecewise constant subspace change) for the “Noisy, Changing” subspace row. The

observed entries set followed the Bernoulli model with different values of ρ in the different rows.

The table demonstrates our discussion from Sec. 4.2.2. (1) In all cases, NORST-smoothing is much

faster than both the solvers for convex MC (NNM), but is slower than the best non-convex MC

approach (projected-GD). (2) NORST-smoothing is always better than projected-GD (implemented

using default code, it is not easy to change the code parameters). It is nearly as good as IALM

(one of the two solvers for NNM) when ρ is large, but is worse than IALM when ρ is small.

4.5.5 Real Video Data

Here we consider the task of Background Recovery for missing data. We use the Meeting Room

video which is a benchmark dataset in Background Recovery. It contains 1755 images of size 64x80

in which a curtain is moving in the wind. Subsequently, there are 1209 frames in which a person

180

Original Corrupted NORST-miss-robGRASTA-RMC projected-GD
(31.6ms) (25ms) (11ms)

Figure 4.5: Background Recovery with foreground layer, and Bernoulli missing entries (ρ = 0.9).
We show the original, observed and recovered frames at t = 1755 + {1059, 1078, 1157}. NORST-
miss-rob exhibits artifacts, but is able to capture most of the background information, whereas,
GRASTA-RMC and projected-GD fail to obtain meaningful estimates. The time taken per sample
for each algorithm is shown in parenthesis.

walks into the room, writes on a blackboard, and exits the room. The first 1755 frames are used

for ST-miss while the subsequent frames are used for RST-miss (since we can model the person as

a sparse outlier [7]).

We generate the set of observed entries using the Bernoulli model with ρ = 0.9. In all ex-

periments, we use the estimate of rank as r = 30. The parameters of NORST-miss are α = 60,

K = 3, and ωevals = 2 × 10−3. We noticed that PETRELS failed to retrieve the background

with default parameters so we increased max cycles= 10 and refer to this as PETRELS(10) in

the sequel. Furthermore, we also ensured that the input data matrix has more columns than rows

by transposing the matrix when necessary. All other algorithms are implemented as done in the

previous experiments. We observed that NORST-miss and SVT provide a good estimate of the

background and NORST is ≈ 150x faster. The relative Frobenius error is provided in the last row

of Table. 4.6. Notice that, in this case, SVT outperforms IALM and NORST, but NORST is the

fastest one. These results are averaged over 10 independent trials.

Moving Object Missing Entries: In our second video experiment, we generated the set of

missing entries using the moving object model with ρ = 0.98. All algorithms are implemented as in

181

the previous experiment. Interestingly, even though we observe 98% of the entries, the performance

of all algorithms degrade compared to the Bern(0.9). This is possibly because the support sets are

highly correlated over time and thus the assumptions of other algorithms break down. The results

are shown in Fig. 4.4. Observe that NORST-miss and SVT provide the best visual comparison and

NORST-miss is faster than SVT by ≈ 400x. PETRELS(10) contains significant artifacts in the

recovered background and IALM provides a static output in which the movements of the curtain

are not discernible.

4.5.6 RST-miss and RMC

In this experiment, we consider the RST-miss problem, i.e., we generate data according to (4.4).

We generate the low rank matrix, L, as done in experiment 1 (single subspace). We generate the

sparse matrix, X as follows: we use the Moving Object Model to generate the support sets such that

s/n = 0.05 and b0 = 0.05 which translates to ρsparse = 0.05 fraction of sparse outliers. The non-

zero magnitudes of X are generated uniformly at random between [xmin, xmax] with xmin = 10 and

xmax = 25. We generated the support of observed entries using Bernoulli Model with probability

ρobs = 0.9.

For initialization step of NORST-miss-robust (Algorithm 2), for the first ttrain = 400 data

samples, we set (yt)i = 10 for all i ∈ Tt. We do this to allow us to use AltProj [36], which is an RPCA

solution, for obtaining the initial subspace estimate. The parameters for this step are set as 500

maximum iterations of AltProj, and tolerance 10−3. The other algorithm parameters for NORST-

miss-robust are α = 60, K = 33, ωevals = 7.8 × 10−4, ξ = xmin/15, and ωsupp = xmin/2 = 5. We

compare6 GRASTA-RMC [22] and projected-GD [11]. For GRASTA-RMC we used the tolerance

10−8, and max cycles= 1. For projected-GD, we use the default tolerance 10−1 and max. iterations

70. The results are given in Table. 4.7. Observe that NORST-miss-robust obtains the best estimate

among the RMC algorithms.

6we do not compare it with NNM based methods for which code is not available online

182

Real video data: In this experiment, we consider Background recovery applied on the second

part of the dataset (last 1209 frames). In addition to the person who enters the room and writes on

the board (sparse component), we generate missing entries from the Bernoulli model with ρ = 0.9.

We initialize using AltProj with tolerance 10−2 and 100 iterations. We set ωsupp,t = 0.9‖yt‖/
√
n

using the approach of [33]. The comparison results are provided in Fig. 4.5. Notice that both

GRASTA-RMC and projected-GD fail to accurately recover the background. Although NORST-

miss-robust exhibits certain artifacts around the edges of the sparse object, it is able to capture

most of the information in the background.

4.6 Conclusions and Open Questions

This work studied the related problems of subspace tracking in missing data (ST-miss) and

its robust version. We show that our proposed approaches are provably accurate under simple

assumptions on only the observed data (in case of ST-miss), and on the observed data and ini-

tialization (in case of robust ST-miss). Thus, in both cases, the required assumptions are only on

the algorithm inputs, making both results complete guarantees. Moreover, our guarantees show

that our algorithms need near-optimal memory; are as fast as vanilla PCA; and can detect and

track subspace changes quickly. We provided a detailed discussion of related work on (R)ST-miss,

(R)MC, and streaming PCA with missing data, that help place our work in the context of what

already exists. We also show that NORST-miss and NORST-miss-robust have good experimental

performance as long as the fraction of missing entries is not too large.

Our guarantee for ST-miss is particularly interesting because it does not require slow subspace

change and good initialization. Thus, it can be understood as a novel mini-batch and nearly

memory-optimal solution for low-rank Matrix Completion, that works under similar assumptions

to standard MC, but needs more numbers of observed entries in general (except in the regime of

frequently changing subspaces).

While our approaches have near-optimal memory complexity, they are not streaming. This is

because they use SVD and hence need multiple passes over short batches of stored data. A key open

183

question is whether a fully streaming provably correct solution can be developed without assuming

the i.i.d. Bernoulli model on the set of missing entries? Two other important open questions

include: (i) can the required number of observed entries be reduced (the limiting bound here is the

bound on missing fractions per column); and (ii) in case of robust ST-miss, can the lower bound

on outlier magnitudes be removed? Another question is whether we can use the tracked estimates

for “control”? For example, can we use the current estimate of the subspace and of the true data

vectors to decide how to sample the set of observed entries at the next time instant or later (in

applications where one can design this set)?

4.7 Appendix A: Proof of Theorem 4.59 and Corollary 4.61

Much of the proof is a simplification of the proof for NORST for RST [33, Sections 4, 5 and

Appendix A]. The analysis of subspace change detection is exactly the same as done there (see

Lemma 4.8 and Appendix A of [33]) and hence we do not repeat it here. We explain the main ideas

of the rest of the proof. To understand it simply, assume that t̂j = tj , i.e, that tj is known. We use

the following simplification of [45, Remark 2.3] to analyze the subspace update step.

Corollary 4.68 (PCA in sparse data-dependent noise (Remark 2.3 of [45])). For t = 1, · · · , α,

suppose that yt = `t+wt+vt with wt = ITtMs,t`t being sparse noise with support Tt, and `t = Pat

where P is a n×r basis matrix and at’s satisfy the statistical right-incoherence assumption given in

the theorem. Let P̂ be the matrix of top r eigenvectors of 1
α

∑
t ytyt

′. Assume that maxt ‖Ms,tP ‖ ≤

q for a q ≤ 3 and that the fraction of non-zeros in any row of the matrix [w1, · · · ,wα] is bounded

by b. Pick an εSE > 0. If 6
√
bqf + λ+

v /λ
− < 0.4εSE and if α ≥ α∗ where

α∗ := C max

(
q2f2

ε2SE

r log n,
λ+
v
λ− f

ε2SE

rv log n

)
,

then, w.p. at least 1− 10n−10, SE(P̂ ,P) ≤ εSE.

First assume that vt = 0 so that λ+
v = 0 and rv = 0. Also, let b0 := c2

f2 denote the bound on

max-miss-frac-rowα assumed in the Theorem.

184

Using the expression for ẑt given in (4.3), it is easy to see that the error et := `t − ˆ̀
t satisfies

et = ITt
(
ΨTt

′ΨTt
)−1

ITt
′Ψ`t, (4.6)

with Ψ = I − P̂(t−1)P̂(t−1)
′. For the first α frames, P̂(t−1) = 0 (zero initialization) and so, during

this time, Ψ = I.

We need to analyze the subspace update steps one at a time. We first explain the main ideas

of how we do this for j > 0 and then explain the different approach needed for j = 0 (because of

zero initialization). Consider a general j > 0 and k = 1, i.e., the first subspace update interval of

estimating Pj . In this interval Ψ = I − P̂j−1P̂j−1
′ and recall that P̂j−1 = P̂j−1,K . Assume that

SE(P̂j−1,Pj−1) ≤ ε.

Using the µ-incoherence assumption, the bound on max-miss-frac-col := maxt |Tt|/n,

SE(P̂j−1,Pj−1) ≤ ε (assumed above), and recalling from the algorithm that P̂j := P̂j,K , it is

not hard to see that7, for all j,

SE(P̂j−1,Pj) ≤ SE(P̂j−1,Pj−1) + SE(Pj−1,Pj)

‖ITt ′Pj‖ ≤ 0.1,

‖ITt ′P̂j,k‖ ≤ SE(P̂j,k,Pj) + 0.1,

‖ITt ′P̂j−1‖ ≤ ε+ 0.1,

‖ (ΨTt
′ΨTt)

−1 ‖ ≤ 1.2 with Ψ = I − P̂j,kP̂j,k
′.

Next we apply Corollary 4.68 to the ˆ̀
t’s. This bounds the subspace recovery error for PCA in

sparse data-dependent noise. Since ˆ̀
t = `t + et with et satisfying (4.6), clearly, et is sparse and

dependent on `t (true data). In the notation of Corollary 4.68, yt ≡ ˆ̀
t, wt ≡ et, vt = 0, Tt ≡ Tt,

`t ≡ `t, P̂ = P̂j,1, P = Pj , and Ms,t = − (ΨTt
′ΨTt)

−1 ΨTt
′ with Ψ = I − P̂j−1P̂j−1

′. Thus, using

bounds from above, ‖Ms,tP ‖ = ‖ (ΨTt
′ΨTt)

−1 ITt
′ΨPj‖ ≤ ‖ (ΨTt

′ΨTt)
−1 ‖‖ITt ′‖‖ΨPj‖ ≤ 1.2(ε +

SE(Pj−1,Pj)) ≡ q. Also, b ≡ b0 := c2
f2 (c2 = 0.001) which is the upper bound on max-miss-frac-rowα

and so 1.2(ε+ SE(Pj−1,Pj)) < 1.2(0.01 + ∆) < 1.3 since ∆ ≤ 1. Thus q < 3. We apply Corollary

4.68 with εSE = q/4. All its assumptions hold because we have set α = Cf2r log n and because we

7Use the RIP-denseness lemma from [41] and some simple linear algebra which includes a triangle inequality type
bound for SE. See the proof of item 1 of Lemma 4.7 of [33]

185

have let b0 = 0.001/f2 and so the required condition 3
√
bfq ≤ 0.9εSE/(1+εSE) holds. We conclude

that SE(P̂j,1,Pj) ≤ 1.2(0.01 + ∆)/4 = 0.3(0.01 + ∆) := q1 whp.

The above is the base case for an induction proof. For the k-th subspace update interval, with

k > 1, we use a similar approach to the one above. Assume that at the end of the (k − 1)-th

interval, we have SE(P̂j,k−1,Pj) ≤ qk−1 := 0.3k−1(0.01 + ∆) whp In this interval, ‖Ms,tP ‖ ≤

1.2‖ITt ′‖‖ΨPj‖ ≤ 1.2SE(P̂j,k−1,Pj) ≤ qk−1 = 1.2 · 0.3k−1(0.01 + ∆) ≡ q. We apply Corollary 4.68

with εSE = q/4. This is possible because we have let b0 = 0.001/f2 and so the required condition

3
√
bfq ≤ 0.9(q/4)/(1 + q/4) holds. Thus we can conclude that SE(P̂j,k,Pj) ≤ 1.2 · 0.3k−1(0.01 +

∆)/4 = 0.3k(0.01 + ∆) := qk whp Thus starting from SE(P̂j,k−1,Pj) ≤ qk−1 := 0.3k−1(0.01 + ∆),

we have shown that SE(P̂j,k,Pj) ≤ 0.3k(0.01 + ∆). This along with the base case, implies that

we get SE(P̂j,k,Pj) ≤ 0.3k(0.01 + ∆) for all k = 1, 2, . . . ,K. The choice of K thus implies that

SE(P̂j ,Pj) = SE(P̂j,K ,Pj) ≤ ε.

For j = 0 and first subspace interval (k = 1), the proof is a little different from that of [33]

summarized above. The reason is we use zero initialization. Thus, in the first update interval for

estimating P0, we have Ψ = I. In applying the PCA in sparse data-dependent noise result of

Corollary 4.68, everything is the same as above except that we now have Ms,t = ITt
′ and so we get

‖Ms,tP ‖ ≤ 0.1. Thus in this case q = 0.1 < 3. The rest of the argument is the same as above.

Now consider vt 6= 0. Recall that the effective noise dimension of vt is rv = maxt ‖vt‖2/λ+
v

where λ+
v = ‖E[vtvt

′]‖. Furthermore, recall that εSE = q/4. Thus, in order to obtain ε-accurate

estimate in the noisy case, we will require that α = O

(
max

(
f2r log n,

λ+
v
λ− frv logn

ε2SE

))
. Thus, we set

εSE = c
√
λ+
v /λ− to ensure that the dependence on ε is on logarithmic (that comes from expression

for K).

The above provides the basic proof idea in a condensed fashion but does not define events that

one conditions on for each interval, and also does not specify the probabilities. For all these details,

please refer to Sections IV and V and Appendix A of [33].

186

4.8 Appendix B: Proof of Corollary 4.66

This proof is also similar to that of NORST for RST [33]. The difference is NORST-miss-

robust uses noisy modified CS [44, 52] to replace l1 min. In comparison to the ST-miss proof

summarized above, we also have to deal with arbitrary outliers, in addition to missing data. This

uses requires sparse support recovery with partial subspace knowledge. This is solved by modified-

CS followed by thresholding based support recovery. To bound the modified-CS error, we apply

Lemma 2.7 of [52]. This uses a bound on ‖bt‖ = ‖Ψ`t‖ and a bound on the (max-miss-frac-col ·

n + 2max-outlier-frac-col · n)-RIC of Ψ. We obtain both these exactly as done for [33, Lemma

4.7, Item 1]: the former uses the slow subspace change bound and the boundedness of at; for

the latter we use the µ-incoherence/denseness assumption and bounds on max-outlier-frac-col and

max-miss-frac-col, and the RIP-denseness lemma of [41]. With the modified-CS error bound, we

prove exact support recovery using the lower bound on xmin. algorithm parameter values of ξ and

ωsupp.

4.9 References

[1] Balzano, L., Chi, Y., and Lu, Y. M. Streaming pca and subspace tracking: The missing
data case. Proceedings of IEEE (2018).

[2] Balzano, L., Recht, B., and Nowak, R. High-dimensional matched subspace detection
when data are missing. In ISIT (2010), pp. 1638–1642.

[3] Balzano, L., Recht, B., and Nowak, R. Online Identification and Tracking of Subspaces
from Highly Incomplete Information. In Allerton Conf. Comm., Control, Comput. (2010).

[4] Balzano, L., and Wright, S. Local convergence of an algorithm for subspace identification
from partial data. Found. Comput. Math. 15, 5 (2015).

[5] Bhojanapalli, S., and Jain, P. Universal matrix completion. In International Conference
on Machine Learning (2014), pp. 1881–1889.

[6] Candes, E. The restricted isometry property and its implications for compressed sensing. C.
R. Math. Acad. Sci. Paris Serie I (2008).

[7] Candès, E. J., Li, X., Ma, Y., and Wright, J. Robust principal component analysis? J.
ACM 58, 3 (2011).

187

[8] Candes, E. J., and Recht, B. Exact matrix completion via convex optimization. Found.
of Comput. Math, 9 (2008), 717–772.

[9] Chen, Y., Bhojanapalli, S., Sanghavi, S., and Ward, R. Coherent matrix completion.
In International Conference on Machine Learning (2014), pp. 674–682.

[10] Chen, Y., Jalali, A., Sanghavi, S., and Caramanis, C. Low-rank matrix recovery from
errors and erasures. IEEE Trans. Inform. Theory 59(7) (2013), 4324–4337.

[11] Cherapanamjeri, Y., Gupta, K., and Jain, P. Nearly-optimal robust matrix completion.
ICML (2016).

[12] Chi, Y., Eldar, Y. C., and Calderbank, R. Petrels: Parallel subspace estimation and
tracking by recursive least squares from partial observations. IEEE Transactions on Signal
Processing (December 2013).

[13] Chouvardas, S., Kopsinis, Y., and Theodoridis, S. Robust subspace tracking with
missing entries: a set–theoretic approach. IEEE Trans. Sig. Proc. 63, 19 (2015), 5060–5070.

[14] Comon, P., and Golub, G. H. Tracking a few extreme singular values and vectors in signal
processing. Proceedings of the IEEE 78, 8 (1990), 1327–1343.

[15] Fazel, M. Matrix rank minimization with applications. PhD thesis, Stanford Univ (2002).

[16] Foucart, S., Needell, D., Plan, Y., and Wootters, M. De-biasing low-rank projection
for matrix completion. In Wavelets and Sparsity XVII (2017), vol. 10394, International Society
for Optics and Photonics, p. 1039417.

[17] Ge, R., Jin, C., and Zheng, Y. No spurious local minima in nonconvex low rank problems:
A unified geometric analysis. arXiv preprint arXiv:1704.00708 (2017).

[18] Ge, R., Lee, J. D., and Ma, T. Matrix completion has no spurious local minimum. In
NIPS (2016), pp. 2973–2981.

[19] Gonen, A., Rosenbaum, D., Eldar, Y. C., and Shalev-Shwartz, S. Subspace learning
with partial information. The Journal of Machine Learning Research 17, 1 (2016), 1821–1841.

[20] Gonen, A., Rosenbaum, D., Eldar, Y. C., and Shalev-Shwartz, S. Subspace learning
with partial information. Journal of Machine Learning Research 17, 52 (2016), 1–21.

[21] Hardt, M., and Wootters, M. Fast matrix completion without the condition number. In
COLT (2014).

188

[22] He, J., Balzano, L., and Szlam, A. Incremental gradient on the grassmannian for online
foreground and background separation in subsampled video. In IEEE Conf. on Comp. Vis.
Pat. Rec. (CVPR) (2012).

[23] Jain, P., and Netrapalli, P. Fast exact matrix completion with finite samples. In Con-
ference on Learning Theory (2015), pp. 1007–1034.

[24] Jiang, X., Zhong, Z., Liu, X., and So, H. C. Robust matrix completion via alternating
projection. IEEE Signal Processing Letters 24, 5 (2017), 579–583.

[25] Jin, C., Kakade, S. M., and Netrapalli, P. Provable efficient online matrix completion
via non-convex stochastic gradient descent. In NIPS (2016), pp. 4520–4528.

[26] Keshavan, R., Montanari, A., and Oh, S. Matrix completion from a few entries. IEEE
Trans. Info. Th. 56, 6 (2010), 2980–2998.

[27] Krishnamurthy, A., and Singh, A. Low-rank matrix and tensor completion via adaptive
sampling. In NIPS (2013), pp. 836–844.

[28] Lai, M., and Varghese, A. On convergence of the alternating projection method for matrix
completion and sparse recovery problems. arXiv preprint arXiv:1711.02151 (2017).

[29] Leeb, W., and Romanov, E. Optimal spectral shrinkage and pca with heteroscedastic noise.
arXiv:1811.02201 (2018).

[30] Lin, Z., Chen, M., and Ma, Y. The augmented lagrange multiplier method for exact
recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055 (2010).

[31] Mansour, H., and Jiang, X. A robust online subspace estimation and tracking algorithm.
In ICASSP (2015), pp. 4065–4069.

[32] Mitliagkas, I., Caramanis, C., and Jain, P. Streaming pca with many missing entries.
Preprint (2014).

[33] Narayanamurthy, P., and Vaswani, N. Nearly optimal robust subspace tracking. In
International Conference on Machine Learning (2018), pp. 3701–3709.

[34] Narayanamurthy, P., and Vaswani, N. Provable dynamic robust pca or robust subspace
tracking. IEEE Transactions on Information Theory 65, 3 (2019), 1547–1577.

[35] Netrapalli, P., Jain, P., and Sanghavi, S. Low-rank matrix completion using alternating
minimization. In STOC (2013).

[36] Netrapalli, P., Niranjan, U. N., Sanghavi, S., Anandkumar, A., and Jain, P. Non-
convex robust pca. In NIPS (2014).

189

[37] Oja, E. Simplified neuron model as a principal component analyzer. Journal of mathematical
biology 15, 3 (1982), 267–273.

[38] Ongie, G., Hong, D., Zhang, D., and Balzano, L. Enhanced online subspace estimation
via adaptive sensing. In Asilomar (2018).

[39] Paige, C. C., and Saunders, M. A. Lsqr: An algorithm for sparse linear equations and
sparse least squares. ACM Transactions on Mathematical Software (TOMS) 8, 1 (1982), 43–71.

[40] Qiu, C., and Vaswani, N. Real-time robust principal components’ pursuit. In Allerton
Conf. on Communication, Control, and Computing (2010).

[41] Qiu, C., Vaswani, N., Lois, B., and Hogben, L. Recursive robust pca or recursive sparse
recovery in large but structured noise. IEEE Trans. Info. Th. (August 2014), 5007–5039.

[42] Recht, B. A simpler approach to matrix completion. Journal of Machine Learning Research
12, Dec (2011), 3413–3430.

[43] Sun, R., and Luo, Z.-Q. Guaranteed matrix completion via non-convex factorization. IEEE
Trans. Info. Th. 62, 11 (2016), 6535–6579.

[44] Vaswani, N., and Lu, W. Modified-CS: Modifying compressive sensing for problems with
partially known support. IEEE Trans. Signal Processing (September 2010).

[45] Vaswani, N., and Narayanamurthy, P. Pca in sparse data-dependent noise. In ISIT
(2018), pp. 641–645.

[46] Vaswani, N., and Narayanamurthy, P. Static and dynamic robust pca and matrix com-
pletion: A review. Proceedings of the IEEE 106, 8 (2018), 1359–1379.

[47] Wang, C., Eldar, Y. C., and Lu, Y. M. Subspace estimation from incomplete observations:
A high-dimensional analysis. JSTSP (2018).

[48] Yang, B. Projection approximation subspace tracking. IEEE Trans. Sig. Proc. (1995), 95–107.

[49] Yang, B. Asymptotic convergence analysis of the projection approximation subspace tracking
algorithms. Signal Processing 50 (1996), 123–136.

[50] Yi, X., Park, D., Chen, Y., and Caramanis, C. Fast algorithms for robust pca via
gradient descent. In NIPS (2016).

[51] Zhan, J., Lois, B., Guo, H., and Vaswani, N. Online (and Offline) Robust PCA: Novel
Algorithms and Performance Guarantees. In Intnl. Conf. Artif. Intell. Stat. (AISTATS) (2016).

190

[52] Zhan, J., and Vaswani, N. Time invariant error bounds for modified-CS based sparse signal
sequence recovery. IEEE Trans. Info. Th. 61, 3 (2015), 1389–1409.

[53] Zhang, D., and Balzano, L. Global convergence of a grassmannian gradient descent algo-
rithm for subspace estimation. In AISTATS (2016).

191

Table 4.1: List of Symbols and Assumptions used in Theorem 4.59.

Observations: yt = PΩt(`t) + vt = PΩt(P(t)at) + vt

Symbol Meaning

tj j-th subspace change time

for t ∈ [tj , tj+1), P(t) = Pj Subspace at time t

PΩt(·) mask to select elements present in Ωt

Ωt Support set of observed entries

Tt(= Ωc
t) Support set of missing entries

vt dense, unstructured noise

Principal Subspace Coefficients (at’s)

element-wise bounded, zero mean,

mutually independent with identical and diagonal covariance

E[atat
′] := Λ

λmax(Λ) = λ+(λmin(Λ) = λ−) Max. (min.) eigenvalue of Λ

f := λ+/λ− Condition Number of Λ

Missing Entries (zt = −ITt ′`t)

Row-Missing Entries max-miss-frac-rowα ≤ 0.001/f2

Column-Missing Entries max-miss-frac-col ≤ 0.01/µr

Intervals for j-th subspace change and tracking

t̂j j-th subspace change detection time

t̂j,fin j-th subspace update complete

J0 := [tj , t̂j) interval before j-th subspace change detected

Jk := [t̂j + (k − 1)α, t̂j + kα) k-th subspace update interval

JK+1 := [t̂j +Kα, tj+1) subspace update completed

Algorithm 8 Parameters

α # frames used for subspace update

K # of subspace updates for each j

ωevals threshold for subspace detection

192

Table 4.2: Comparing guarantees for ST-miss. We treat the condition number and incoherence
parameters as constants for this discussion.

Algorithm Tracking Memory Time Allows changing Observed Entries

delay subspaces?

GROUSE [3] Partial Guarantee O(nr) O(ndρr2) No i.i.d. Bernoulli(ρ)

PETRELS [47] Partial Guarantee O(nr2) O(ndρr2) No i.i.d. Bernoulli(ρ)

MBPM [32, 20] d % r2 log2 n log(1/ε)
ρ2 O(nr) O(ndr) No i.i.d. Bernoulli(ρ)

NORST-miss d ≥ r log n log(1/ε) O
(
nr log n log 1

ε

)
O
(
ndr log 1

ε

)
Yes bounded fraction,

(this work) c/r per column, c per row

Table 4.3: Comparing MC guarantees. Recall rL := rank(L) ≤ rJ . In the regime when the
subspace changes frequently so that J equals its upper bound and rL ≈ d/ log2 n, NORST-miss
is better than the non-convex methods (AltMin, projGD, SGD) and only slightly worse than the
convex ones (NNM). In general, the sample complexity for NORST-miss is significantly worse than
all the MC methods.

Algorithm Sample complexity Memory Time Observed entries

(# obs. entries, m)

nuc norm min (NNM) [15] Ω(nrL log2 n) O(nd) O(n3/
√
ε) i.i.d. Bernoulli (m/nd)

weighted NNM [9] Ω(nrL log2 n) O(nd) O(n3/
√
ε) indep. Bernoulli

AltMin [26] Ω(nr4.5
L log 1

ε) O(nd) O(nrL log 1
ε) i.i.d. Bernoulli (m/nd)

projected-GD [11] Ω(nr2
L log2 n) O(nd) O(nr3

L log2 n log 1
ε) i.i.d. Bernoulli (m/nd)

online SGD [25] Ω
(
nr2

L log n
(
rL + log 1

ε

))
O(nd) O

(
nr4

L log n log 1
ε

)
i.i.d. Bernoulli (m/nd)

NORST-miss Ω((1− c
r
)nd) O

(
nr log n log 1

ε

)
O
(
ndr log 1

ε

)
≤ c · d per row

(this work) ≤ (1− c
r) · n per column

Sample-Efficient Ω(nrL log2 n log r) O
(
nr log n log 1

ε

)
O
(
ndr log 1

ε

)
i.i.d. Bernoulli(ρt) where,

NORST-miss ρt = 1− c/r for t ∈ [tj , tj + (K + 2)α)

(this work) ρt = r log2 n log r/nd other times

Note: Here, f(n) = Ω(g(n)) implies that there exists a G > 0 and an n0 > 0 s.t for all n >

n0, |f(n)| ≥ G · |g(n)|

Table 4.4: Comparing robust MC guarantees. We treat the condition number and incoherence
parameters as constants for this table.

Algorithm Sample complexity Memory Time Observed entries Outliers

NNM [15] Ω(nd) O(nd) O(n3/
√
ε) i.i.d. Bernoulli (c) i.i.d. Bernoulli (c)

Projected GD [11] Ω(nr2 log2 n) O(nd) Ω(nr3 log2 n log2(1/ε)) i.i.d. Bernoulli (m/nd) bounded fraction (O(1/r) per row and col)

NORST-miss-rob Ω(nd(1− 1/r)) O(nr log n log(1/ε)) O(ndr log(1/ε)) bounded frac bounded frac.

(this work) O(1/r) per row, O(1) per col O(1/r) per row, O(1) per col

Extra assumptions: Slow subspace change and lower bound on outlier magnitude

193

Algorithm 8 NORST-miss.

1: Input: yt, Tt Output: ˆ̀
t, P̂(t) Parameters: r, K = C log(1/ε), α = Cf2r log n, ωevals =

2ε2λ+

2: P̂0 ← 0n×r, j ← 1, k ← 1

3: phase← update; t̂0 ← 0; t̂−1,fin = 0

4: for t > 0 do

5: Ψ← I − P̂(t−1)P̂(t−1)
′; ỹt ← Ψyt;

6: ˆ̀
t ← yt − ITt(ΨTt

′ΨTt)
−1ΨTt

′ỹt.

7: if phase = update then

8: if t = t̂j + uα− 1 for u = 1, 2, · · · , then

9: P̂j,k ← r-SVD[L̂t;α], P̂(t) ← P̂j,k, k ← k + 1.

10: else

11: P̂(t) ← P̂(t−1)

12: end if

13: if t = t̂j +Kα− 1 then

14: t̂j,fin ← t, P̂j ← P̂(t)

15: k ← 1, j ← j + 1, phase← detect.

16: end if

17: end if

18: if phase = detect and t = t̂j−1,fin + uα then

19: Φ← (I − P̂j−1P̂j−1
′), B ← ΦL̂t,α

20: if λmax(BB′) ≥ αωevals then

21: phase← update, t̂j ← t,

22: end if

23: end if

24: end for

25: Smoothing mode: At t = t̂j +Kα for t ∈ [t̂j−1 +Kα, t̂j +Kα− 1]

26: P̂ smooth
(t) ← basis([P̂j−1, P̂j])

27: Ψ← I − P̂ smooth
(t) P̂ smooth

(t)
′

28: ˆ̀smooth
t ← yt − ITt(ΨTt

′ΨTt)
−1ΨTt

′yt

194

Algorithm 9 NORST-miss-robust. Obtain P̂0 by C log r iterations of AltProj applied to Y[1;ttrain]

with ttrain = Cr and with setting (yt)Tt = 10 (or any large nonzero value) for all t = 1, 2, . . . , ttrain.

1: Input: yt, Tt Output: ˆ̀
t, P̂(t)

2: Extra Parameters: ωsupp ← xmin/2, ξ ← xmin/15

3: P̂0 ← obtain as given in the caption;

4: j ← 1, k ← 1, phase← update; t̂0 ← ttrain;

5: for t > ttrain do

6: Ψ← I − P̂(t−1)P̂(t−1)
′; ỹt ← Ψyt;

7: x̂t,cs ← arg minx ‖(x)Ttc‖1 s.t ‖ỹt −Ψx‖ ≤ ξ.
8: T̂t ← Tt∪ ← {i : |x̂t,cs| > ωsupp}
9: ˆ̀

t ← yt − IT̂t(ΨT̂t
′ΨT̂t)

−1ΨT̂t
′ỹt

10: Lines 9− 27 of Algorithm 8

11: end for

12: Offline (RMC solution): line 25 of Algorithm 8.

Table 4.5: (top) Number of samples (frames) required by NORST and its heuristic extensions,
and PETRELS to attain ≈ 10−16 accuracy. The observed entries are drawn from a i.i.d. Bernoulli
model with ρ = 0.7 fraction of observed entries. Notice that NORST-buffer(4) and NORST-sliding-
window (β = 10, R = 1) converges at the same rate as PETRELS and the time is also comparable.
The other variants require more samples to obtain the same error but are faster compared to
PETRELS. (bottom) Evaluation of Sample Efficient NORST with ρ1 = 0.9 and ρ2 = 0.15.

Algorithm NORST NORST-buffer NORST-sliding-window and buffer PETRELS

Parameter R, β R = 1 R = 2 R = 3 R = 4 β = 1, R = 0 β = 10, R = 1

Time taken (ms) 1.9 10.8 18.6 27.5 34.5 16 35 33

Number of samples 3540 2580 2100 2050 1950 2400 1740 1740

Algorithm NORST-miss (6) NORST-samp-eff (1) PETRELS (15) GROUSE (2)

Average Error 0.04 0.04 0.02 0.13

195

Table 4.6: Comparison of ‖L − L̂‖F /‖L‖F for MC. We report the time taken per sample in
milliseconds in parenthesis. Thus the table format is Error (computational time per sample). The
first three rows are for the fixed subspace model. The fourth row contains results for time-varying
subspace and with noise of standard deviation 0.003

√
λ− added. The last row reports Background

Video Recovery results (for the curtain video shown in Fig. 4.4 when missing entries are Bernoulli
with ρ = 0.9.

Subspace model NORST-smoothing nuclear norm min (NNM) solvers projected-GD

IALM SVT

Fixed (Bern, ρ = 0.9) 1.26× 10−15 (10) 1.43× 10−12 (150) 7.32× 10−7 (164) 0.98 (1)

Fixed (Bern, ρ = 0.3) 3.5× 10−6 (11) 5.89× 10−13 (72) – 0.98 (9)

Noisy, Changing (Bern, ρ = 0.9) 3.1× 10−4 (3.5) 3.47× 10−4 (717) 2.7× 10−3 (256) 0.97 (2)

Video Data 0.0074 (83.7) 0.0891 (57.5) 0.0034 (6177) –

Table 4.7: Comparing recovery error for Robust MC methods. Missing entries were Bernoulli with
ρ = 0.9, and the outliers were sparse Moving Objects with ρsparse = 0.95. The time taken per
sample is shown in parentheses.

NORST-miss-rob GRASTA-RMC projected-GD

0.0832 (3) 0.1431 (2.9) 0.5699 (2)

196

CHAPTER 5. FEDERATED OVER-AIR SUBSPACE TRACKING FROM

INCOMPLETE AND CORRUPTED DATA

Praneeth Narayanamurthy, Namrata Vaswani, and Aditya Ramamoorthy

Dept. of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50010

Modified from a manuscript under review in IEEE Transactions on Signal Processing

Abstract

Subspace tracking (ST) with missing data (ST-miss) or outliers (Robust ST) or both (Robust

ST-miss) has been extensively studied in the last many years. This work provides a new simple

algorithm and guarantee for both ST with missing data (ST-miss) and RST-miss. Unlike past

work on this topic, the algorithm is much simpler (uses fewer parameters) and the guarantee does

not make the artificial assumption of piecewise constant subspace change, although it still handles

that setting. Secondly, we extend our approach and its analysis to provably solving these problems

when the raw data is federated and when the over-air data communication modality is used for

information exchange between the K peer nodes and the center.

5.1 Introduction

Subspace tracking (ST) with missing data or outliers or both has been extensively studied in

the last few decades [44, 10, 48, 33, 40]. ST with outlier data is commonly referred to as Robust

ST (RST); it is the dynamic or “tracking” version of Robust PCA [7, 32]. This work provides

a new simple algorithm and guarantee for both ST with missing data (ST-miss) and RST-miss.

Secondly, we extend our approach and its analysis to provably solving these problems when the

data is federated and when the over-air data communication modality [3] is used for information

exchange between the K peer nodes and the central server. (R)ST-miss has important applications

197

in video analytics [8], social network activity learning [47] (anomaly detection) and recommendation

system design [42] (learning time-varying low-dimensional user preferences from incomplete user

ratings). The federated setting is most relevant for the latter two. At each time, each local node

would have access to user ratings or messaging data from a subset of nearby users, but the subspace

learning and matrix completion algorithm needs to use data from all the users.

Federated learning [18] refers to a distributed learning scenario in which individual nodes keep

their data private but only share intermediate locally computed summary statistics with the central

server at each algorithm iteration. The central server in turn, shares a global aggregate of these

iterates with all the nodes. There has been extensive recent work on solving machine learning

problems in a federated setting [19, 46, 41, 5, 22] but all these assume a perfect channel between

the peer nodes and the central server. This is a valid assumption in the traditional digital trans-

mission mode in which different peer nodes transmit in different time or frequency bands, and

appropriate channel coding is done at lower network layers to enable error-free recovery with very

high probability.

Advances in wireless communication technology now allow for (nearly) synchronous transmis-

sion by the various peer nodes and thus enable an alternate computation/communication paradigm

for learning algorithms for which the aggregation step is a summation operation. In this alternate

paradigm, the summation can be performed “over-air” using the superposition property of the

wireless channel and the summed aggregate or its processed version can be broadcasted to all the

nodes [2, 3, 45]. Assuming K peer nodes, this over-air addition is up to K-times more time- or

bandwidth-efficient than the traditional mode. In the absence of error control coding at the lower

network layers, additive channel noise and channel fading effects corrupt the transmitted data.

In general, there exist well-established physical layer communication techniques to estimate and

compensate for channel fading [38]. Also, while perfect synchrony in transmission is impossible,

small timing mismatches can be handled using standard techniques. We expand upon both these

points in Sec 5.4.1. From a signal processing perspective, therefore, the main issue to be tackled is

the additive channel noise which now corrupts each algorithm iterate.

198

Related Work. Provable ST with missing or corrupted data (ST-miss and RST-miss) in the

centralized setting has been extensively studied in past work [10, 48, 33, 29, 28, 12]. All existing

results are either partial guarantees (need assumptions on intermediate algorithm estimates; do not

provide a set of assumptions on algorithm inputs that guarantee that the algorithm output is close

to the quantity of interest) [10, 48, 33, 12] or assume piecewise constant subspace change [29, 28].

This assumption is often not valid in practice, e.g, there is no reason for a “subspace change time”

in case of slow changing video backgrounds. Existing works assume it in order to obtain simple

guarantees for ε-accurate subspace recovery for any ε > 0 (in the noise-free case) or for any ε larger

than the noise-level (in the noisy case).

The only other existing works that also study unsupervised learning algorithms with noisy

algorithm iterations are [15, 4]; both these works study the noisy iteration version of the power

method (PM) for computing the top r singular vectors of a given data matrix. In these works,

noise is deliberately added to each algorithm iterate in order to ensure privacy of the data matrix.

It should be noted that other solutions to batch low-rank matrix completion (LRMC) cannot

be implemented to respect the federated constraints (the aggregation step needs to be a summation

operation). We briefly discuss these in Sec. 5.4. Another somewhat related line of work involves

distributed algorithms for PCA; these are reviewed in [42], and there is also one for distributed

ST-miss [21], Most of these come without provable guarantees, and most also do not account for

either missing data or iteration-noise or both. For example, the recent work [23] aims to optimize

communication efficiency but the channel is assumed to be perfect, and so iteration noise is not

considered. Moreover, the algorithm is computationally expensive (involves computing a full SVD

of a large matrix); and the guarantee provided is a multiplicative one on the PCA reconstruction

error. Finally, LRMC in a decentralized setting is studied in [25] with the goal of speeding up

computation via parallel processing using multiple computing nodes. In this paper as well, the

full data is communicated to the central server and hence this is not a federated setting. Also, no

channel noise is considered. It is not clear if this algorithm or guarantee can be modified to deal

199

with federated data or over-air communication. Finally, there also exist heuristics for various types

of distributed LRMC such as [37, 1, 43].

Other works that also develop algorithms for the federated over-air aggregation setting include

[3, 14]. However, all these develop stochastic gradient descent (SGD) based algorithms and the focus

is on optimizing resource allocation to satisfy transmit power constraints. These do not provide

performance guarantees for the resulting perturbed SGD algorithm. A different related line of

work is in developing federated algorithms, albeit not in the over-air aggregation mode. Recent

works such as [19, 20] attempt to empirically optimize the communication efficiency. Similarly, [13]

studies federated PCA but it does not consider over-air communication paradigm, and does not

deal with outliers or missing data.

Contributions. This work has two contributions. First, we obtain a new set of results that

provide a complete guarantee for ST-miss and RST-miss without assuming piecewise constant sub-

space change. The tradeoff is our error bounds are a little more complicated. Another advantage of

our new result is that it analyzes a much simpler tracking algorithm (only one algorithm parameter

needs to be set instead of three). Our guarantee is useful (improves upon the naive approach of

standard PCA repeated every α frames) when the subspace changes are indeed slow enough. At

the same time, we can still obtain a guarantee for our simpler algorithm that holds under piecewise

constant subspace change but does not require an upper bound on the amount of change, i.e, we

can still recover the result of [28].

The second contribution of this work is a provable solution to the above problem in the federated

data setting when the data communication is done in the over-air mode. As explained above, the

main new challenge here is to develop approaches that are provably robust to additive noise in the

algorithm iterates. This setting of noisy iterations has received little attention in literature as noted

above. To the best of our knowledge, this is the first provable algorithm that studies (R)ST-miss in

a federated, over-air paradigm. The main challenges here are (i) a design of an algorithm for this

setting (this requires use of a federated over-air power method (FedOA-PM) for solving the PCA

step) and (ii) dealing with noise iterates due to the channel noise. For the latter, the main work is

200

in obtaining a modified result for PCA in sparse data-dependent noise solved via the FedOA-PM;

see Lemma 5.84.

Chapter organization. We give the centralized problem formulation next. After this, in Sec

5.3, we develop our solution for just ST-miss in the centralized setting and explain how it successfully

relaxes the piecewise constant subspace change assumption made by existing guarantees. Next, we

consider RST-miss in the federated over-air setting in Sec 5.4. Simulations are shown in Sec 5.5.

5.2 Notation and Problem Formulation

5.2.1 Notation

We use the interval notation [a, b] to refer to all integers between a and b, inclusive, and we

use [a, b) := [a, b − 1]. We use [K] := [1,K]. ‖.‖ denotes the l2 norm for vectors and induced l2

norm for matrices unless specified otherwise. We use I to denote the identity matrix of appropriate

dimensions. We use MT to denote a sub-matrix of M formed by its columns indexed by entries

in the set T . A matrix P with mutually orthonormal columns is referred to as a basis matrix;

it represents the subspace spanned by its columns. For basis matrices P1,P2, SE(P1,P2) :=

‖(I−P1P
>
1)P2‖ quantifies the Subspace Error (distance) between their respective subspaces. This

is equal to the sine of the largest principal angle between the subspaces. If P1 and P2 are of the

same dimension, SE(P1,P2) = SE(P2,P1). We reuse the letters C, c to denote different numerical

constants in each use with the convention that C ≥ 1 and c < 1.

We use r-SVD to refer to the matrix of top-r left singular vectors (vectors corresponding to the

r largest singular values) of the given matrix. Finally, M † := (M>M)−1M> is used to denote

the pseudo inverse of M .

5.2.2 ST with missing data (ST-miss)

Assume that at each time t, we observe an n-dimensional data stream of the form

yt = PΩt(
˜̀
t), t = 1, 2, · · · , d (5.1)

201

where PΩt(·) is a binary mask that selects entries in the index set Ωt (this is known), and ˜̀
t

approximately lies an low (at most r) dimensional subspace that is either constant or changes

slowly over time. The goal is to track the subspace(s). This statement can be made precise in

several ways. The first is as done in past work [28] (and older work). One assumes a “generative

model”: ˜̀
t = Ptat with Pt being a n× r basis matrix. The goal is to track the column span of Pt,

span(Pt). To make this problem well-posed (number of unknowns smaller than number of observed

scalars), the piecewise constant subspace change model assumption becomes essential as explained

in [28]. However, this is a restrictive assumption that is typically not valid for real data, e.g., there

is no reason for the subspaces to change at certain select time instants in case of slow changing

videos.

A second approach to make our problem statement precise, and the one that we use in this

work, is as follows. For an α large enough1, consider α-length sub-matrices formed by consecutive

˜̀
t’s. Let L̃1 := [˜̀1, ˜̀

2, . . . , ˜̀
α]; L̃2 := [˜̀α+1, ˜̀

α+2, . . . , ˜̀
2α] and so on. Let Pj be the r-SVD (matrix

of top r singular vectors) of L̃j . Slow subspace change means that, for all j,

∆j := SE(Pj−1,Pj) ≤ ∆tv

for a ∆tv � 1. Our guarantee assumes ∆tv = 0.1. The goal is to track (sequentially estimate) the

subspace spanned by the columns of Pj as well as the rank-r approximation, Lj := PjP
>
j L̃j . As

is well known (Eckart-Young theorem), this minimizes ‖L̃ − Ľ‖2 over all rank r matrices Ľ. We

will occasionally refer to Lj and its columns `t as the true data.

Let Aj := P>j L̃j be the matrix of subspace coefficients along Pj . Let Vj := L̃j − Lj be the

residual noise/error. Clearly, since

L̃j
SVD
= [Pj SB

>︸ ︷︷ ︸
Aj

+Pj,⊥S⊥B
>
⊥︸ ︷︷ ︸

Vj

] = PjAj︸ ︷︷ ︸
Lj

+Vj ,

it is immediate that LjV
>
j = 0.

Let at, `t and vt be the columns of Aj , Lj , and Vj respectively. Thus, for t ∈ Jj :=

[(j − 1)α+ 1, (j − 1)α+ 2, . . . jα], at = P>j
˜̀
t, `t = Pjat, and vt = ˜̀

t − `t.

1as we show later α ≥ Cr logn suffices

202

Also, let Tt = (Ωt)
c be the index set of missing entries at time t. With this, we can rewrite

(5.1) as

yt = PΩt(
˜̀
t) = ˜̀

t − ITtITt
> ˜̀

t

= `t + vt − ITtITt
>(`t + vt)

5.2.3 Robust ST-miss (RST-miss)

Robust ST-miss assumes that there can also be additive sparse outliers in the observed data

yt. Thus, for all t = 1, 2, · · · , d,

yt = PΩt(
˜̀
t) + st (5.2)

where st is the sparse outlier with support Tsparse,t. The assumptions on Ωt, ˜̀
t remain exactly the

same as in the previous section. Due to space constraints, we provide the complete algorithm and

guarantee for this problem in the supplementary material.

5.2.4 Federated Over-Air Data Sharing Constraints and Iteration Noise

The goal is to also solve RST-miss in a federated over-air fashion. Concretely, this means the

following for an iterative algorithm. At iteration l, the central server broadcasts the (l − 1)-th

estimate of the quantity of interest2 denoted Ûl−1 to each of the K nodes. Each node then uses

this estimate and its (locally) available data to compute the new local estimate denoted Ũk,l. The

nodes then synchronously transmit these to the central server but the transmission is corrupted by

channel noise and thus the central server receives

Ũl :=
∑
k

Ũk,l + Wl

where Wl is the channel noise. We assume that each entry of Wl is i.i.d. zero-mean Gaussian

with variance σ2
c . The central server then processes Ũl to get the new estimate of the quantity

of interest, Ûl which is then broadcast to all K nodes for the next iteration. The presence of Wl

2The quantity of interest could be a vector or a matrix depending on the application. For the problem we study
(subspace learning/tracking), the quantity of interest is a n× r basis matrix.

203

in each iteration introduces a new and different set of challenges in algorithm design and analysis

compared to what has been largely explored in existing literature.

5.3 ST from Missing Data (ST-miss)

5.3.1 Proposed Algorithm

Recall that we split our data into mini-batches of size α; thus Y1 := [y1,y2, . . .yα], Y2 :=

[yα+1,yα+2, . . .y2α] and so on. Thus Yj := [y(j−1)α+1,y(j−1)α+2, . . . ,yjα]. Without the slow sub-

space change assumption, the obvious way to solve ST-miss would be to use what can be called

simple PCA: for each mini-batch j, compute P̂j as the r-SVD of Yj . However, when slow subspace

change is assumed, a better approach is a simplification of our algorithm from [28]. We still ini-

tialize via r-SVD: compute P̂1 as the r-SVD of Y1. For the j-th mini-batch, we first obtain an

estimate of the missing entries for each column using the previous subspace estimate and projected

Least Squares (LS) as follows. For every t ∈ ((j − 1)α, jα], we compute

ˆ̀
t = yt − ITtΨ

†
Tt(Ψyt) (5.3)

where Ψ = I − P̂j−1P̂
>
j−1. This step works under the assumption that the span of P̂j−1 is a good

estimate of that of Pj−1. By slow subspace change, this also means it is a good estimate of the

span of Pj . This equation is a compact way to write the following: (ˆ̀
t)T ct = (yt)T ct = (˜̀

t)T ct

(use the observed entries as is) and (ˆ̀
t)Tt = Ψ†Tt(Ψyt). To understand this, notice that Ψyt =

−ΨTtzt + (Ψ`t + Ψvt) where zt := (ITt
> ˜̀

t) is the vector of missing entries. The second two terms

can be treated as small “noise”/disturbance3 and so we can compute an estimate of zt from Ψyt

by LS.

The second step is to compute P̂j as the r-SVD of L̂j := [ˆ̀(j−1)α+1, · · · , ˆ̀
jα].

Finally, we can use P̂j to obtain an optional improved estimate,
ˆ̂
`t = yt − ITtΨ̃

†
Tt(Ψ̃yt) where

Ψ̃ = I − P̂jP̂
>
j . We summarize this approach in Algorithm 10. We show next that, under slow

3The first is small because of slow subspace change and P̂j−1 being a good estimate (if span(P̂j−1) = span(Pj)
this term would be zero); the second is small because ‖vt‖ is small due to the approximate low-rank assumption.

204

Algorithm 10 STMiss-NoDet

Require: Y , T
1: Parameters: α

2: Initialize: P̂1 ← r-SV D[y1, · · · ,yα], j ← 2

3: for j ≥ 2 do

4: Projected LS:

5: Ψ← I − P̂j−1P̂
>
j−1

6: for all t ∈ ((j − 1)α, jα] do

7: ˆ̀
t ← yt − ITt(ΨTt)

†(Ψyt)

8: end for

9: PCA on L̂j:

10: P̂j ← r-SV D(L̂j) where L̂j := [ˆ̀(j−1)α+1, · · · , ˆ̀
jα]

11: for all t ∈ ((j − 1)α, jα] do . optional

12: Ψ̃← I − P̂jP̂
>
j

13:
ˆ̂
`t ← yt − ITt(Ψ̃Tt)

†(Ψ̃yt)

14: end for

15: end for

Ensure: P̂j , ˆ̀
t,

ˆ̂
`t.

subspace change, Algorithm 10 yields a significantly better subspace estimates than simple PCA

(PCA on each Yj).

5.3.2 Assumptions and Main Result

It is well known from the LRMC literature [8, 34, 31] that for guaranteeing correct matrix

recovery, we need to assume incoherence (w.r.t. the standard basis) of the left and right singular

vectors of the matrix. We need a similar assumption on Pj ’s.

Definition 5.69 (µ-Incoherence of Pjs). Assume that

max
j∈[d/α]

max
m∈[r]

‖P (m)
j ‖22 ≤

µr

n

where P
(m)
j denotes the m-th row of Pj and µ ≥ 1 is a constant (incoherence parameter).

Since we study a tracking algorithm (we want to track subspace changes quickly), we replace

the standard right singular vectors’ incoherence assumption with the following simple statistical

assumption on the subspace coefficients at. This helps us obtain guarantees on our mini-batch

algorithm that operates on α-size mini-batches of the data.

205

Definition 5.70 (Statistical µ-Incoherence of ais). Recall that at = P>j
˜̀
t for all t ∈ Jj. Assume

that the at’s are zero mean; mutually independent; have identical diagonal covariance matrix Λ, i.e.,

that E[ata
>
t] = Λ with Λ diagonal; and are bounded, i.e., maxt ‖at‖2 ≤ µrλ+, where λ+ := λmax(Λ)

and µ ≥ 1 is a small constant. Also, let λ− := λmin(Λ) and f := λ+/λ−.

If a few complete rows (columns) of the entries are missing, it is impossible to recover the

underlying matrix. This can be avoided by either assuming bounds on the number of missing

entries in any row and in any column, or by assuming that each entry is observed uniformly at

random with probability ρ independent of all others. In this work we assume the former which is

a weaker assumption. We need the following definition.

Definition 5.71 (Bounded Missing Entry Fractions). Consider the n× α observed matrix Yj for

the j-th mini-batch of data. We use max-miss-frac-col (max-miss-frac-row) to denote the maximum

of the fraction of missing entries in any column (row) of this matrix.

Owing to the assumption that L̃j is approximately low-rank, it follows that L̃j − Lj := Vj is

“small”.

Definition 5.72 (Small, bounded, independent modeling error). Let λ+
v := maxt ‖E[vtv

>
t]‖. We

assume that λ+
v < λ−, maxt ‖vt‖2 ≤ Crλ+

v and vt’s are mutually independent over time.

Main result. We have the following result for the naive algorithm of PCA on every mini-batch

of α observed samples Yj . We use the following definition of noise level

no-lev :=

√
λ+
v /λ−

Theorem 5.73 (STmiss Algorithm 12). .

Set algorithm parameter α = Cf2r log n.

Assume that no-lev < 0.02 and the following hold:

1. Incoherence: Pj’s satisfy µ-incoherence, and at’s satisfy statistical right µ-incoherence;

2. Missing Entries: max-miss-frac-col ≤ 0.01/(µr), max-miss-frac-row ≤ 0.0001/f2;

206

3. Modeling Error: assume Definition 5.72

4. Subspace Change: ∆j := SE(Pj−1,Pj) ≤ ∆tv = 0.1,

then, with probability at least 1− 10dn−10, we have

SE(P̂j ,Pj)

≤ max(0.1 · 0.3j−1 + ∆tv(0.3 + 0.32...+ 0.3j−1),no-lev)

< max(0.1 · 0.3j−1 + 0.5∆tv,no-lev)

Also, at all j, and for t ∈ [(j − 1)α, jα), ‖ˆ̂`t − ˜̀
t‖ ≤ 1.2 · SE(P̂j ,Pj)‖ ˜̀

t‖+ ‖vt‖ while ‖ ˆ̀
t − ˜̀

t‖ ≤

1.2 · SE(P̂j−1,Pj)‖ ˜̀
t‖+ ‖vt‖ ≤ 1.2 · (∆tv + SE(P̂j ,Pj))‖ ˜̀

t‖+ ‖vt‖

Proof: See Sec. 5.3.4.

Theorem 5.74 (Simple PCA). Let P̂j be the r-SVD of Yj with α = Cf2r log n. Assume µ-

incoherence of Pjs, statistical µ-incoherence of ais, modeling error assumption given in Definition

5.72, max-miss-frac-col ≤ 0.01/(µr), max-miss-frac-row ≤ 0.01/f2. Then, with probability at least

1− dn−10,

SE(P̂j ,Pj) ≤ max(0.1 · 0.25,no-lev)

Proof: The proof is the same as that for the initialization step of Algorithm 10; see Sec. 5.3.4.

First consider the practically relevant setting of approximately rank r L̃j ’s so that the noise

level
√
λ+
v /λ− is small. In particular, assume it is smaller than 0.1 · 0.25. Then, if ∆tv is small

enough, the bound of Theorem 5.73 is significantly smaller. If the noise level is larger, then in

both cases, the noise level term dominates and both results give the same bound. In summary, in

all cases, as long as ∆tv is small (slow subspace change holds), Theorem 5.73 gives an as good or

better bound. We demonstrate this point in Fig 5.1.

207

5.3.3 Guarantee for piecewise constant subspace change

Previous work on provable ST-miss [28] assumed piecewise constant subspace change (required

the subspace to be constant for long enough), but did not require an upper bound on the amount

of change. As we show next STmiss-NoDet is able to track such changes as well and provide similar

tracking guarantees even under a (mild) generalization of the previous model.

Theorem 5.75. Set algorithm parameter α = Cf2r log n. Assume that no-lev < 0.02 and the

first three assumptions of Theorem 5.73 hold. Under an approximately piecewise constant subspace

change model (∆j ≤ no-lev for all j except for j = jγ, for γ = 1, 2, . . . ,) with the subspace change

times satisfying jγ − jγ−1 > K := C log(1/no-lev), then, w.p. at least 1− dn−10,

SE(P̂j ,Pj) ≤
(0.2 + 2no-lev) · 0.25 + no-lev), if j = jγ

(0.2 + 2no-lev) · 0.3(j−jγ)−1 + no-lev, if jγ < j < jγ+1

Notice that for jγ+1 > j > jγ +K, the bound is at most 2no-lev.

The subspace change model in this result does not require an upper bound on the amount of

subspace change as long as the change occurs infrequently. However, it still allows for small rotations

to the subspace at each time. The exponential decay in the subspace recovery error bound is the

same as that guaranteed by the results is [28]. STmiss-NoDet does not detect subspace changes.

However, a detection step similar to that used in previous work can be included if needed and then

a similar detection guarantee can also be proved. We provide these in the Supplementary Material

(https://arxiv.org/abs/2002.12873).

5.3.4 Proof of Theorem 5.73 and 5.74

The proof follows by a careful application of a result from [30] that analyzes PCA in sparse data-

dependent noise (SDDN) along with simple linear algebra tricks, some of which are also borrowed

from there. The novel contribution here is the application of the same ideas for providing a result

https://arxiv.org/abs/2002.12873

208

that holds under a much simpler and practically valid assumption of slow changing subspaces

(without any artificial piecewise constant assumption). Also, the proof provided here is much

shorter.

Subspace error bounds. Consider the projected LS step. Recall that Ψ = I − P̂j−1P̂
>
j−1.

Since yt can be expressed as yt = ˜̀
t − ITt(I

>
Tt

˜̀
t), using the idea explained while developing the

algorithm,

ˆ̀
t = yt − ITtΨ

†
TtΨ(−ITtI>Tt ˜̀

t + ˜̀
t)

= yt − ITt(Ψ
>
TtΨTt)

−1Ψ>TtΨ(−ITtI>Tt ˜̀
t + ˜̀

t)

= yt + ITtI
>
Tt

˜̀
t − ITt(Ψ

>
TtΨTt)

−1Ψ>Tt
˜̀
t

= ˜̀
t − ITt(Ψ

>
TtΨTt)

−1Ψ>Tt
˜̀
t

= `t + vt − ITt (ΨTt)
†Ψ>Tt(`t + vt)

This final expression can be reorganized as follows.

ˆ̀
t = `t + vt − ITt (ΨTt)

†Ψ>Ttvt︸ ︷︷ ︸
small, unstructured noise

− ITt (ΨTt)
†Ψ>Tt`t︸ ︷︷ ︸

sparse, data dependent noise

:= `t + et (5.4)

Thus, recovering Pj from estimates L̂j is a problem of PCA in sparse data-dependent noise (SDDN):

the “noise” et consists of two terms, the first is just small unstructured noise (depends on vt) while

the second is sparse with support Tt and depends linearly on the true data `t. We studied PCA-

SDDN in detail in [30] where we showed the following.

Lemma 5.76 (PCA-SDDN). For i = 1, · · · , α, assume that zi = `i + wi + vi with wi = ITiBi`i

being sparse, data-dependent noise with support Ti; `i = Pai with P being an n × r basis matrix

that satisfies µ-incoherence, and ai’s satisfy statistical µ-incoherence; and vi is small bounded

noise with λ+
v := ‖E[viv

>
i]‖ < λ− and maxi ‖vi‖2 ≤ Crvλ

+
v . Let q := maxi‖BiP ‖ and let b be the

maximum fraction of non-zeros in any row of the matrix [w1, · · · ,wα]. Let P̂ be the matrix of top

209

r eigenvectors of 1
α

∑
i ziz

>
i . Assume that q ≤ 3. Pick an ε > 0. If

7
√
bqf +

λ+
v

λ−
< 0.4ε, and (5.5)

α ≥ α∗ := C max

(
q2f2

ε2
r log n,

λ+
v
λ− f

ε2
r log n

)
, (5.6)

then, w.p. at least 1− 10n−10, SE(P̂ ,P) ≤ ε.

This result says that, under the incoherence assumptions, and assuming that the unstructured

noise satisfies the stated assumptions, if the support of the SDDN, wi, changes enough over time

so that b, which is the maximum fraction of nonzeros in any row of the matrix [w1,w2, . . . ,wα], is

sufficiently small, if the unstructured noise power is small enough compared to the r-th eigenvalue

of the true data covariance matrix and it is bounded with small effective dimension, ‖vi‖2/λ+
v ≤ Cr,

and if α is large enough, then span(P̂), is a good approximation of span(P). Notice here that for

SDDN, the true data and noise correlation, E[`iwi
>], is not zero, and the noise power, E[wiwi

>],

itself is also not small. However, the key idea used to obtain this result is the following: enough

support changes over time (small b) helps ensure that the upper bounds on sample averaged values

of both these quantities, ‖(1/α)
∑

i E[`iwi
>]‖ and ‖(1/α)

∑
i E[wiwi

>]‖ are
√
b times smaller than

those on their maximum instantaneous values, ‖E[`iwi
>]‖ and ‖E[wiwi

>]‖.

Our proof uses Lemma 5.76 applied on the j-th mini-batch of estimates, L̂j along with the

following simple facts.

Fact 5.77. 1. From [33, Remark 3.6] we have: let P be an µ-incoherent, n × r basis matrix.

Then, for any set T ⊆ [n], we have

‖I>T P ‖2 ≤ |T | ·
µr

n

2. For n × r basis matrices P , P̂ (useful when the column span of P̂ is a good approximation

of that of P), and any set T ⊆ [n], we have

‖I>T P̂ ‖ ≤ SE(P̂ ,P) + ‖I>T P ‖

210

3. For a µ-incoherent n× r basis matrix, P , and any set T ⊆ [n],

λmin(IT
>(I − PP>)IT) = 1− ‖IT>P ‖2

Thus, combining the above three facts,

‖(IT >(I − P̂ P̂>)IT)−1‖ ≤ 1

1− (SE(P̂ ,P) +
√
|T |µr/n)2

The proof for j = 1 is a little different from j > 1. For j = 1, Ψ = I and ˆ̀
t = yt. Also, i = t.

For j > 1, Ψ = I − P̂j−1P̂j−1
> and i = t− (j − 1)α. Consider j = 1 (initialization). In this case,

ˆ̀
t = yt satisfies (5.4) with Ψ = I. We apply Lemma 5.76 with i = t, zi ≡ ˆ̀

t = yt, `i ≡ `t, P ≡ P1,

wi ≡ −ITtI>Tt`t, vi ≡ vt − ITtI
>
Ttvt, Bi ≡ I>Tt . Notice that the fraction of non-zeros in the matrix

[w1, · · ·wα] is bounded by max-miss-frac-row and thus b ≡ max-miss-frac-row. To obtain q, we need

to bound maxt∈J1 ‖BtP1‖ = maxt∈J1 ‖ITt>P1‖. By item 1 of Fact 5.77, ‖I>TtP1‖2 ≤ |Tt|µr/n ≤

max-miss-frac-col · nµr/n. Under the assumptions of Theorem 5.73, |max-miss-frac-col| ≤ 0.01/µr

and thus maxt ‖BtP ‖ ≤ 0.1 = q1 ≡ q. We pick ε = max(no-lev, 0.25q1). From the Theorem

assumptions, b = max-miss-frac-row ≤ 0.0001/f2 and no-lev ≤ 0.2 and so

7
√
bqf +

λ+
v

λ−
≤ 7q · 0.01 + no-lev2

≤ 0.07q + 0.2no-lev ≤ 0.4ε1

Also, since ε = max(no-lev, 0.25q1), the value of α used in the Theorem satisfies the requirements of

Lemma 5.76. Thus, we can apply this lemma to conclude that SE(P̂1,P1) ≤ ε = max(no-lev, 0.25q1)

with q1 = 0.1. This completes the proof of Theorem 5.74 since simple-PCA just repeats this step

at each j.

Now consider any j > 1. We claim that for j > 1,

SE(P̂j ,Pj) ≤ εj

with εj satisfying the following recursion: ε1 = max(no-lev, 0.25q1) with q1 = 0.1, and

εj = max(no-lev, 0.25 · 1.2 · (εj−1 + ∆tv)) (5.7)

211

This can be simplified to show that εj ≤ max(no-lev, (no-lev + ∆tv)
∑j−1

j′=1(0.3)j
′
, 0.3j(0.25q1) +

∆tv
∑j−1

j′=1(0.3)j
′
). This can be simplified to

εj ≤ 2 max(no-lev, 0.3j(0.25q1) + ∆tv

j−1∑
j′=1

(0.3)j
′
) (5.8)

To prove the above claim, we use induction. Base case: j = 1 done above. Induction assump-

tion: assume SE(P̂j−1,Pj−1) ≤ εj−1. The application of the PCA-SDDN lemma is similar to that

for j = 1 with the difference being that i = t − (j − 1)α and Bi is different now. We now have

Bi ≡ (Ψ>TtΨTt)
−1Ψ>Tt and so maxt∈Jj ‖BtP ‖ = maxt ‖(Ψ>TtΨTt)

−1Ψ>TtPj‖. This can be bounded

using Fact 5.77 as follows

max
t
‖(Ψ>TtΨTt)

−1Ψ>TtPj‖

≤ max
t
‖(Ψ>TtΨTt)

−1‖‖I>Tt‖‖ΨPj‖

≤ 1

1− (εj−1 +
√

0.01)2
· 1 · SE(P̂j−1,Pj)

≤ 1

1− (εj−1 +
√

0.01)2
(εj−1 + ∆tv) := qj

Using (5.8), εj−1 ≤ max(no-lev, 0.25q1 + ∆tv(3/7) ≤ max(0.02, 0.025 + 0.1(3/7)) < 0.08. This

follows by using j − 2 <∞, and no-lev < 0.02, and ∆tv < 0.1 (from Theorem assumptions). Using

this upper bound on εj−1 in the denominator expression of above,

qj ≤ 1.2(εj−1 + ∆tv) (5.9)

Apply the PCA-SDDN lemma with q ≡ qj and ε = max(no-lev, 0.25qj). With this choice of ε, it is

easy to see that 7
√
bqjf + λ+

v
λ− ≤ 0.4ε. Also, α given in the Theorem again satisfies the requirements

of the lemma. Applying the PCA-SDDN lemma, and using (5.9) to bound q ≡ qj ,

SE(P̂j ,Pj) ≤ max(no-lev, 0.25qj)

≤ max(no-lev, 0.25 · 1.2(εj−1 + ∆tv)) = εj

This proves our claim.

212

Bounds on error in estimating ˜̀
t. From (5.4), ˆ̀

t − ˜̀
t = −ITt(Ψ>TtΨTt)

−1I>TtΨ
˜̀
t with

Ψ = I − P̂j−1P̂j−1
> for t ∈ Jj . Using this, ˜̀

t = `t + vt = Pjat + vt, and Fact 5.77, we can get

‖ ˆ̀
t − ˜̀

t‖ ≤ SE(P̂j−1,Pj)‖`t‖+ ‖vt‖ ≤ (εj−1 + ∆tv)‖`t‖+ ‖vt‖

Using the same approach that we used to derive (5.4), we get that
ˆ̂
`t − ˜̀

t has the same expression

as ˆ̀
t − ˜̀

t but with Ψ = I − P̂jP̂j
> for t ∈ Jj . Thus,

‖ˆ̂`t − ˜̀
t‖ ≤ SE(P̂j ,Pj)‖`t‖2 + ‖vt‖ ≤ εj−1‖`t‖+ ‖vt‖

5.3.5 Proof of Theorem 5.75

The proof again follows by using the PCA-SDDN lemma given above along with use of Fact

5.77. The main difference is the use of the following idea.

Consider the interval just before the subspace change, i.e., the j-th interval with j = jγ − 1. At

this time, by our delay assumption, SE(P̂j ,Pj) ≤ 2no-lev and thus, using Fact 5.77, ‖ITt>P̂j‖ ≤

2no-lev + 0.1. Also, using Fact 5.77,

max
t
‖(Ψ>TtΨTt)

−1Ψ>TtPj‖

≤ max
t
‖(Ψ>TtΨTt)

−1‖‖I>TtΨPj‖

≤ 1

1− (2no-lev + 0.1)2
· (‖I>TtP̂j−1‖+ ‖I>TtPj‖)

≤ 1

1− (2no-lev + 0.1)2
· ((0.1 + 2no-lev) + 0.1)

Combining with the bound from the previous section, the final bound for this term is

min(SE(P̂j−1,Pj), ((0.1 + 2no-lev) + 0.1))

1− (2no-lev + 0.1)2

5.4 Federated Over-Air Robust ST-Miss

In this section, we study robust ST-miss in the federated, over-air learning paradigm. There are

two important distinctions with respect to the centralized ST-miss problem from Sec. 5.3 namely

(a) data is now available across different nodes and the proposed algorithm must obey the federated

213

data sharing constraints and (b) the proposed algorithm must be able to deal with gross and sparse

outliers. A key observation that allows us to build upon Sec. 5.3 is that only Line 10 of Algorithm

10 needs to be federated (all other operations are performed locally on each vector). To this end,

we first explain why tackling iteration noise is sufficient to satisfy the Fed-OA constraints in Sec.

5.4.1, we then present our result for PCA in the Fed-OA setting in Sec. 5.4.2 (federated version

of Line 10 of Algorithm 10), and finally show how this is used to develop an algorithm that solves

Robust ST-Miss in the Fed-OA setting in Sec. 5.4.3.

5.4.1 Dealing with mild asynchrony and channel fading

As discussed previously, the three key challenges while working with over-air aggregation are

(a) small timing mismatches, (b) channel fading, and (c) iteration noise. There exist a plethora

of techniques within physical layer communications for dealing with channel fading and mild asyn-

chrony. The main idea is to use carefully designed pilot sequences. Pilot sequences are symbols that

the transmitter-receiver pairs agree on in advance and are transmitted in the beginning of a data

frame. For instance, suppose that there are only K = 2 transmitters and the relative offsets be-

tween the transmitters is at most j symbols. In this case, both transmitters can use pilot sequences

of length 2j + 1, [a1, a1, . . . , a1] and [a2, a2, . . . , a2] respectively. Since the offset is at most j, the

central node receives at least one symbol with values a1 + a2. It can determine the relative offset

by determining the start location of the value a1 + a2. Once the estimated offset is communicated

back to the nodes, the center can then receive the correct sum by having the nodes appropriately

zero pad their transmissions. Extensions of these ideas can be utilized to handle the case of K > 2

nodes. Similarly, channel fading is compensated for by estimating the fading coefficients which can

be done since the values of the pilot symbols are assumed to be known. These techniques are by

now quite well-known in the single and multiple antenna scenarios [38]. Thus, the main problem

to be addressed is iteration noise which is the focus of this paper.

214

5.4.2 Federated Over-Air PCA via the Power Method (PM)

Here we provide a result for subspace learning while obeying the federated data sharing con-

straints.

Problem setting. The goal of PCA (subspace learning) is to compute an r-dimensional

subspace approximation in which a given data matrix Z ∈ Rn×d approximately lies. The k-th node

observes a columns’ sub-matrix Zk ∈ Rn×dk . We have Z := [Z1, · · · ,Zk, · · · ,ZK] ∈ Rn×d with

d =
∑K

k=1 dk and the goal of PCA is to find an n×r basis matrix U that minimizes ‖Z−UU>Z‖2F .

As is well known, the solution, U , is given by the top r eigenvectors of ZZ>. Thus the goal is to

estimate the span of U in a federated over-air (FedOA) fashion.

Federated Over-Air Power Method (FedOA-PM). The simplest algorithm for computing

the top eigenvectors is the Power Method (PM) [11]. The distributed PM is well known, but most

previous works assume the iteration-noise-free setting, e.g., see the review in [42]. On the other

hand, there is recent work that studies the iteration-noise-corrupted PM [15, 4] but in the centralized

setting. In this line of work, the authors consider two models for iteration-noise. The noise could

either be deterministic, or statistical noise could be added to ensure differential privacy. Our setting

is easier than the deterministic noise model, since we assume a statistical channel noise model, but

is harder than the privacy setting since we do not have control over the amount of noise observed

at the central server (here use the term channel noise and iteration-noise interchangeably).

The vanilla PM estimates U by iteratively updating Ũl = ZZ>Ûl−1 followed by QR decompo-

sition to get Ûl. FedOA-PM approximates this computation as follows. At iteration l, each node

k computes Ũk,l := ZkZ
>
k Ûl−1 and synchronously transmits it to the central server which receives

the sum corrupted by channel noise, i.e., it receives

Ũl :=

K∑
k=1

Ũk,l + Wl = ZZ>Ûl−1 + Wl.

since
∑

k ZkZ
>
k = ZZ>. Here Wl is the channel noise. It then computes a QR decomposition of

Ũl to get a basis matrix Ûl which is broadcast to all the K nodes for use in the next iteration. We

summarize this complete FedOA-PM algorithm in Algorithm 11. If no initialization is available,

215

Algorithm 11 FedOA-PM: Federated Over-Air PM

Require: Z (data matrix), r (rank), L (# iterations), Û0 (optional initial subspace estimate)

1: K nodes, Zk ∈ Rn×dk local data at k-th node.

2: If no initial estimate provided, at central node, do Ũ0
i.i.d.∼ N (0, I)n×r; Û0 ← Ũ0, transmit to

all K nodes.

3: for l = 1, . . . , L do

4: At k-th node, for all k ∈ [K], compute Ũk,l = ZkZ
>
k Ûl−1

5: All K nodes transmit Ũk,l synchronously to central node.

6: Central node receives Ũl :=
∑

k Ũk,l + Wl.

7: Central node computes ÛlRl
QR← Ul

8: Central node broadcasts Ûl to all nodes

9: end for

10: At k-th node, compute Ũk,L+1 = ZkZ
>
k ÛL

11: All K nodes transmit Ũk,L+1 synchronously to the central node.

12: Central node receives ŨL+1 :=
∑

k Ũk,L+1 + WL+1

13: Central node computes Λ̂ = Û>L ŨL+1 and its top eigenvalue, σ̂1 = λmax(Λ̂).

Ensure: ÛL, σ̂1.

it starts with a random initialization. When we use FedOA-PM for subspace tracking in the next

section, the input will be the subspace estimate from the previous time instant.

We use σi to denote the i-th largest eigenvalue of ZZ>, i.e., σ1 ≥ σ2 ≥ · · ·σn ≥ 0. We have

the following guarantee for Algorithm 11.

Lemma 5.78 (FedOA-PM). Consider Algorithm 11. Pick the desired final accuracy ε ∈ (0, 1/3).

Assume that, at each iteration, the channel noise Wl
i.i.d.∼ N (0, σ2

c) with (i) σc < εσr/(5
√
n) and

(ii) R := σr+1/σr < 0.99.

When using random initialization, if the number of iterations, L = Ω
(

1
log(1/R) log

(
nr
ε

))
. then,

with probability at least 0.9− L exp(−cr), SE(U , ÛL) ≤ ε.

When using an available initialization with SE(Û0,U) < ε0, if L = Ω

(
1

log(1/R) log

(
1

ε
√

1−ε20

))
,

then, with probability at least 1− L exp(−cr), SE(U , ÛL) ≤ ε.

Lemma 5.78 is similar to the one proved in [15, 4] for private PM but with a few key differences

which we discuss in the Supplementary Material (Appendix 5.10) due to space constraints. We also

provide a guarantee for the convergence of the maximum eigenvalue (Lines 10 − 13 of Algorithm

11) below.

216

Lemma 5.79 (FedOA-PM: Maximum eigenvalue). Let σi be the i-th largest eigenvalue of ZZ>.

Under the assumptions of Lemma 5.78, σ̂1 computed in line 13 of Algorithm 11 satisfies

(1− 4ε2)σ1 − ε2σr+1 − εσr ≤ σ̂1 ≤ (1 + ε)σ1

To our best knowledge, the Lemma 5.79 has not been proved in earlier work. This result is

useful because threshlding the top eigenvalue of an appropriately defined matrix is typically used for

subspace change detection, see for example [28]. The proof of Lemma 5.79 given in Supplementary

Material requires use of Weyl’s inequality and the careful bounding of two error terms.

Note: The reason we obtain a constant probability 0.9 in the Lemma 5.78 is as follows: for any

given r-dimensional subspace, U and a random Gaussian matrix Û , the matrix Û>U is an r × r

random Gaussian matrix with independent entries. The singular values of Û>U equal the cosine

of the r principal angles between Û0 and U . For successfully estimation (through any iterative

method) it is necessary that none of the principal angles are π/2. To ensure this, we need to lower

bound the smallest singular value of Û>U . This is difficult because the smallest singular value of

square or “almost” square random matrices can be arbitrarily close to zero [35, 36]. The same issue

is also seen in [15, 4] 4. In fact, this is an issue for any randomized algorithm for estimating only

the top r singular vectors (without a full SVD), e.g., see [27, 26, 17].

We next define the federated over-air robust subspace tracking with missing entries (Fed-OA-

RSTMiss) problem, and show how Algorithm 11 and Lemma 5.78 is used to solve Fed-OA-RSTMiss.

5.4.3 Fed-OA-RSTMiss: Problem setting

In this section, we use αk to denote the number of data points at node k at time t and α :=
∑

k αk

to denote the total number at time t. We do this to differentiate from d (in Sec. 5.4.2) which is

used to indicate the total number of data vectors. Thus, at time t, d = tα and dk = tαk. At time

t and node k, we observe a possibly incomplete and noisy data matrix Yk,t of dimension n × αk

with the missing entries being replaced by a zero. This means the following: let L̃k,t denote the

4These papers also provide a more general result that allows one to compute an r′-dimensional subspace approx-
imation for an r′ > r. If r′ is picked sufficiently large, e.g., if r′ = 2r, then the guarantee holds with probability at
least 1− 0.1r.

217

unknown, complete, approximately low-rank matrix at node k at time t. Then

Yk,t = PΩk,t(L̃k,t + Gk,t) = PΩk,t(L̃k,t) + Sk,t

where Gk,t’s are sparse outliers and Sk,t := PΩk,t(Gk,t), and PΩk,t sets entries outside the set Ωk,t to

zero. The full matrix available from all nodes at time t is denoted Yt := [Y1,t,Y2,t, . . . ,YK,t]. This

is of size n× α. The true (approximately) rank-r matrix L̃t is similarly defined. Define the index

sets I1,t := [1, 2, . . . , α1], I2,t := [α1 + 1, α1 + 2, . . . , α1 + α2] and so on. Denote the i-th column of

Yt by yi, i = 1, 2, . . . , α. And with slight abuse of notation, we define (the matrix binary masks)

Ω1,t := [(T1,t)
c, (T2,t)

c, · · · , (Tα1,t)
c], Ω2,t := [(Tα1+1,t)

c, (Tα1+2,t)
c, · · · , (Tα1+α2,t)

c] and so on where

Ti,t is the set of missing entries in column i of the data matrix at time t, (Ti,t)c is its complement

w.r.t [n]. Thus, the observations satisfy

yi = PT ci,t(˜̀
i) + si, i ∈ Ik,t, k ∈ [K] (5.10)

where si are sparse vectors with support Tsparse,i. Notice that it is impossible to reover gi on the set

Ti,t and so by definition, Tsparse,i, Ti,t are disjoint. Let Pt denote the (n× r dimensional) matrix of

top r left singular vectors of L̃t. In general, our assumptions imply that L̃t is only approximately

rank r. As done in our result for ST-miss (in a centralized setting), we define the matrix of the

principal subspace coefficients at time t as At := P>t L̃t, the rank-r approximation, Lt := PtP
>
t L̃t

and the “noise” orthogonal to the span(Pt) as Vt := L̃t−Lt. With these definitions, for all i ∈ Ik,t

and k ∈ [K], we can equivalently express the measurements as follows

yi = PT ci,t(˜̀
i) + si

= ˜̀
i − ITi,tI

>
Ti,t

˜̀
i + si

:= ˜̀
i + zi + si

= `i + zi + si + vi

The goal is to track the subspaces Pt quickly and reliably, and hence also reliably estimate the

columns of the rank r matrix Lt, under the FedOA constraints given earlier. Our problem can also

be understood as a dynamic (changing subspace) version of robust matrix completion [9].

218

5.4.4 Algorithm

The overall idea of the solution is similar to that for ST-miss. The algorithm still consists of

two parts: (a) obtain an estimate of the columns L̃t using the previous subspace estimate P̂t−1;

and (b) use this estimated matrix L̂t to update the subspace estimate, i.e., obtain P̂t by r-SVD.

The algorithm can be initialized via r-SVD (as done in ST-miss) if we assume that Y1 (the set

of data available at t = 1) contains no outliers and if not, one would need to use a batch RPCA

approach such as AltProj [32] to obtain the initial subspace estimate P̂1.

In the federated setting (a) is done locally at each node, while (b) requires a Fed-OA algorithm

for SVD which is done using Algorithm 11. If one were to consider a federated but noise-free

setting, there would be no need for new analysis (standard guarantees for PM would apply).

For step (a) (obtaining an estimate of L̃t column-wise), we use the projected Compressive

Sensing (CS) idea [33]. This relies on the slow-subspace change assumption. Let P̂t−1 denote the

subspace basis estimate from the previous time and let Φ = I−P̂t−1P̂
>
t−1. Projecting yi orthogonal

to P̂t−1 helps mostly nullify `i but gives projected measurements of the missing entries, ITiI
>
Ti`i

and the sparse outliers, si as follows

Φyi = Φ(si − ITiI
>
Ti`i)︸ ︷︷ ︸

projected sparse vector

+ Φ(`i + vi)︸ ︷︷ ︸
error

If the previous subspace estimate is good enough, and the noise is small, the error term above will

be small. Now recovering the vector si − ITiI
>
Ti`i is from Φyi is a problem of noisy compressive

sensing with partial support knowledge (since we know Ti). We first recover the support of si using

the approach of [24], and then perform a least-squares based debiasing to estimate the magnitude

of the entries. Following this, an estimate of the true data, ˆ̀
i is computed by subtraction from the

observed data yi. We show in Lemma 5.83 that ˆ̀
i satisfies

ˆ̀
i = `i − IT̂i

(
Ψ>T̂i

ΨT̂i

)−1
I>T̂i

Ψ(`i + vi) + vi (5.11)

Now we have L̂t := [L̂1,t, L̂2,t, · · · , L̂K,t] with L̂k,t available only at node k. To goal is to

compute an estimate (P̂t) of its top r left singular vectors while obeying the federated data sharing

219

Algorithm 12 Fed-OA-RSTMiss-NoDet

Require: Y , T
1: Parameters: L← C log(1/no-lev), ωsupp, ξ, α

2: Init: τ ← 1, j ← 1, P̂1

3: for t > 1 do

4: L̂t ← Fed-ModCS(yi, Ik,t, Ti, P̂t−1)

5: P̂t ← FedOA-PM(L̂t, r, L, P̂t−1)

6:
ˆ̂
Lt ← Fed-ModCS(yi, Ik,t, Ti, P̂t) . optional

7: end for

Ensure: P̂

Algorithm 13 Federated Modified Compressed Sensing

1: procedure Fed-ModCS(yi, Ik,t, Ti, P̂t−1)

2: for all node k, i ∈ Ik,t do

3: Ψ← I − P̂t−1P̂
>
t−1

4: ỹi ← Ψyi
5: ŝi,cs ← arg mins ‖(s)(Ti)c‖1 s.t. ‖ỹi −Ψs‖ ≤ ξ.
6: T̂i ← Ti ∪ {j : |(ŝi,cs)j | > ωsupp}
7: ˆ̀

i ← yi − IT̂i(ΨT̂i)
†ỹi.

8: end for

9: Output: L̂t
10: end procedure

constraints. We implement this through FedOA-PM (Algorithm 11) with Zk ≡ L̂k,t being the data

matrix at node k. We invoke FedOA-PM with an initial estimate P̂t−1. This simple change allows

the probability of success of the overall algorithm to be close to 1 rather than 0.9 which is what

the result of Lemma 5.78 predicts. This result is obtained by carefully combining the result for

PCA-SDDN in a centralized setting (Lemma 5.76) and the result for FedOA-PM (Lemma 5.78).

The result is summarized in Lemma 5.84. Applying these results in exactly the same manner as we

did in Sec. 5.3.4 (with a few minor differences we point out in the next section), we get the main

result.

5.4.5 Guarantee for Fed-OA RST-miss

Before we state the main result, we need a few definitions.

220

Definition 5.80 (Sparse outlier fractions). Consider the n × α sparse outlier matrix St :=

[S1,t, . . . ,SK,t] at time t. We use max-outlier-frac-col (max-outlier-frac-row) to denote the max-

imum of the fraction of non-zero elements in any column (row) of this matrix. Also define

xmin = mini∈Ik,t minj∈Tsparse,i |(si)j |.

Let λ+
v := maxi∈Ik,t ‖E[viv

>
i]‖ and maxi∈Ik,t ‖vi‖2 ≤ Crλ+

v for all k ∈ [K].

Theorem 5.81 (Federated Robust Subspace Tracking NoDet). Consider Algorithm 12. Assume

that
√
λ+
v /λ− := no-lev ≤ 0.2. Set L = C log(1/no-lev) and ωsupp = xmin/2, ξ = xmin/15. Assume

that the following hold:

1. At t = 1 we are given a P̂1 s.t. SE(P1, P̂1) ≤ εinit.

2. Incoherence: Pt’s satisfy µ-incoherence, and ai’s satisfy statistical right µ-incoherence;

3. Missing Entries: max-miss-frac-col ∈ O(1/µr), max-miss-frac-row ∈ O(1);

4. Sparse Outliers: max-outlier-frac-col ∈ O(1/µr), max-outlier-frac-row ∈ O(1);

5. Channel Noise: the channel noise seen by each FedOA-PM iteration is mutually independent

at all times, isotropic, and zero mean Gaussian with standard deviation σc ≤ no-levλ−/10
√
n.

6. Subspace Model: The total data available at each time t, α ∈ Ω(r log n) and ∆tv :=

maxt SE(Pt−1,Pt) s.t.

0.3εinit + 0.5∆tv ≤ 0.28 and

C
√
rλ+(0.3t−1εinit + 0.5∆tv) +

√
rvλ

+
v ≤ xmin

then, with probability at least 1− 10dn−10, for t > 1, we have

SE(P̂t,Pt)

≤ max(0.3t−1εinit + ∆tv(0.3 + 0.32...+ 0.3t−1),no-lev)

< max(0.3t−1εinit + 0.5∆tv,no-lev)

Also, at all times t, ‖ˆ̂`i − `i‖ ≤ 1.2 · SE(P̂t,Pt)‖`i‖+ ‖vi‖ for all i ∈ Ik,t, k ∈ [K].

221

Discussion. Items 2-4 of Theorem 5.81 are necessary to ensure that the RST-miss and robust

matrix completion problems are well posed [9, 28]. The initialization assumption of Theorem 5.81

is different from the requirement of Theorem 5.73 due to the presence of outliers. Just performing a

r-SVD on Y1 as done in Algorithm 10 does not work since even a few outliers can make the output

arbitrarily far from the “true subspace”. Additionally, without a “good initialization” Algorithm

12 cannot obtain good estimates of the sparse outliers since the noise in the sparse recovery step

would be too large. One possibility to extend our result is to assume that there are no outliers at

t = 1, i.e., S1 = 0 in which case, we use the initialization idea of Algorithm 10 (see Remark 5.82).

Item 5 is standard in the federated learning/differential privacy literature [15, 4] as without bounds

on iteration noise, it is not possible to obtain a final estimate that is close to the ground truth.

Finally, consider item 6: the first part is required to ensure that the projection matrices, Ψ’s satisfy

the restricted isometry property [6, 24] which is necessary for provable sparse recovery (with partial

support knowledge). This is a more stringent assumption than ∆tv ≤ 0.1 assumed in Theorem 5.73

due to the presence of outliers. The second part of item 6 is an artifact of our analysis and arises

due to the fact that it is hard to obtiain element-wise error bounds for Compressive Sensing.

In Theorem 5.81 we assumed that we are given a good enough initialization. If however, S1

were 0, we have the following result.

Remark 5.82. Under the conditions of Theorem 5.81, if S1 = 0, then all conclusions of Theorem

5.81 hold with the following changes

1. The number of iterations is set as L = C log(n/no-lev)

2. The subspace model (item 6 satisfies all conditions with εinit replaced by 0.01 · 0.3

3. The probability of success is now 0.9− 10dn−10.

5.4.6 Proof Outline

Here we prove our main result for robust ST-Miss under the federated data sharing constraints.

The proof relies on two main results given below – (i) the result of (centralized) RST-Miss proved

222

in the Supplementary Material (Appendix. 5.9) and (ii) our result for federated over-air power

method from Sec. 5.4.2.

Lemma 5.83 (Projected-CS with partial support knowledge). Consider Lines 5− 7 of Algorithm

13. Under the conditions of Theorem 5.81, we have for all t and all i ∈ Ik,t, the error seen by the

compressed sensing step satisfies

‖Ψ(`i + vi)‖ ≤ (0.3t−1εinit + 2.5∆tv)
√
µrλ+ +

√
rvλ

+
v

‖ŝi,cs − si‖ ≤ 7xmin/15 < xmin/2, T̂sparse,i = Tsparse,i, the error e := ˆ̀
i − `i satisfies

e = −IT̂i
(
Ψ>T̂i

ΨT̂i

)−1
I>T̂i

Ψ(`i + vi) + vi,

= (ei)` + (ei)v + vi (5.12)

and ‖ei‖ ≤ 1.2(0.3t−1εinit + 2.5∆tv)
√
µrλ+ + 2.2

√
rvλ

+
v . Here, Ψ = I − P̂t−1P̂

>
t−1

Lemma 5.84 (FedOA PCA-SDDN (available init)). Consider the output P̂ of FedOA-PM (Algo-

rithm 11) applied on data vectors zi distributed across K nodes, when zi = `i+ei+vi, i = 1, 2, . . . , α

with `i = Pai, ei = ITiBi`i being sparse, data-dependent noise with support Ti; the modeling error

vi is bounded with maxi ‖vi‖2 ≤ Crvλ
+
v where λ+

v := ‖E[viv
>
i]‖. The matrix of top-r left singu-

lar vectors, P satisfies µ-incoherence, and ai’s satisfy µ-statistical right-incoherence. The channel

noise is zero mean i.i.d. Gaussian with standard deviation σc ≤ εPMλ
−/10

√
n and is independent

of the `i’s. Let q := maxi ‖BiP ‖ and let b denote the fraction of non-zeros in any row of the SDDN

matrix E = [e1, · · · , eα]. Pick an εPM > 0. If

7
√
bqf + λ+

v /λ
− < 0.4εPM ,

α ≥ Cr log nmax(q2

ε2PM
f2,

λ+
v
λ−
ε2PM

f), and if FedOA-PM is initialized with a matrix Pinit such that

SE(Pinit,P) ≤ εinit,PM , then after L = C log(1/(εPM
√

1− ε2init,PM)) iterations, with probability at

least 1− L exp(−cr)− n−10, P̂ satisfies SE(P̂ ,P) ≤ εPM .

With these two Lemmas, the proof of Theorem 5.81 is similar to the proof of Theorem 5.73.

Firstly, consider the projected CS with partial support knowledge step. Lemma 5.83 applied to

223

500 1,000 1,500 2,000 2,500

0.2

0.4

0.6

0.8

1

Mini-batch index (j)

S
E

(P̂
j
,P

j
)

(a) Small rotations at each time

500 1,000 1,500 2,000 2,500
10−14

10−7

100

Mini-batch index j

S
E

(P̂
j
,P

j
)

(b) Piecewise Constant Subspace – Large

simple-PCA NORST STMiss-nodet PETRELS GROUSE

Figure 5.1: Comparison of ST-Miss Algorithms in the centralized setting.

each vector locally gives us ˆ̀
i = `i − ei with ei satisfying (5.12). Next, at each time t, we update

the subspace as the top r left singular vectors of L̂t, where the k-th node only has access to

the sub-matrix L̂k,t. For a t > 1, we assume that the previous subspace estimate, P̂t−1 satisfies

SE(P̂t−1,Pt−1) ≤ max(0.3t−2εinit + 0.5∆tv,no-lev). We invoke Lemma 5.84 with P̂init ≡ P̂t−1

and thus, εinit,PM ≡ max(0.3t−2εinit + 0.5∆tv, no-lev); zi ≡ ˆ̀
i, i ∈ Ik,t; P ≡ Pt, ei ≡ (ei)`,

vi ≡ (ei)v + vi; and εPM ≡ max(0.3t−2εinit + 0.5∆tv, no-lev). Under the conditions of theorem

5.81, we conclude that w.h.p., SE(P̂t,Pt) ≤ max(0.3t−1εinit + 0.5∆tv, no-lev). Thus, applying this

argument inductively proves the result. For the second optional FedOA-PM step, the same ideas

from the proof of Theorem 5.73 apply.

5.5 Numerical Experiments

Experiments are performed on a Desktop Computer with Intel
R©

Xeon 8-core CPU with 32GB

RAM and the results are averaged over 100 independent trials. The codes are available at https:

//github.com/praneethmurthy/distributed-pca.

5.5.1 Centralized STMiss

Small Rotations at each time. We first consider the centralized setting for Subspace

Tracking with missing data (Sec. 5.3). We demonstrate results under two sets of subspace change

https://github.com/praneethmurthy/distributed-pca
https://github.com/praneethmurthy/distributed-pca

224

models. First we consider the “rotation model” that has been commonly used in the literature

[10, 48]. At each time t, we generate a n × r dimensional subspace P(t) = e−δtBtP(t−1) with

P(0) generated by orthonormalizing the columns of a i.i.d. standard Gaussian matrix and Bt is

some skew symmetric matrix to simulate rotations and δt controls the amount of rotation (for

this experiment we set δt = 10−4 which ensures that ∆tv ≈ 10−2). We generate matrix Ã as

a i.i.d. uniform random matrix of size r × d and set the t-th column of the true data matrix

˜̀
t = P(t)ãt. Thus, in the notation of our result, Pj is the matrix of the top r left singular vectors

of L̃j = [˜̀(j−1)α+1, · · · ˜̀jα] and Aj = P>j L̃j . In all experiments, we choose n = 1000 and d = 3000.

We simulate the set of observed entries using a bernoulli model where each element of the matrix is

observed with probability 0.9. For all experiments, we set r = 30 and the fraction of missing entries

to be 0.1. We implement STMiss-nodet (Algorithm 10) and set r = 30. We compare with NORST

[28] (the state-of-the-art theoretically), GROUSE [48], and PETRELS [10] (the state-of-the-art

experimentally). For all algorithms, we used default parameters mentioned in the codes. We also

implement the simple PCA method wherein we estimate P̂j as the top-r left singular vectors of Yj

for each mini-batch. For all algorithms, the mini-batch size was chosen as α = 60. The results are

shown in Fig. 5.1(a). We see that as specified by Theorem 5.74, the simple PCA algorithm does

not improve the recovery errors since it is not exploiting slow subspace change. However, all other

algorithms exploit slow-subspace change and thus are able to provide better estimates with time.

We also notice that PETRELS is the fastest to converge, followed by NORST and STMiss-nodet,

and finally GROUSE. This is consistent with the previous set of results in [28].

Piecewise Constant. Next, we consider a piecewise constant subspace change model that

has been considered in the provable subspace tracking literature [28]. In this, we simulate a large

subspace change at t1 = 1500. The subspace is fixed until then, i.e., Pj = P1 for all j ∈ [1, dt1/αe)

and Pj = P2 for all j ∈ [dt1/αe, dd/αe]. The results are shown in Fig. 5.1(b). Notice that

NORST and STMiss-nodet significantly outperform simple PCA as both exploit slow subspace

change. Additionally, even though the change is large (in the notation of Definition 5.85 given in

the supplementary material, ∆large ≈ 1 and ∆tv = 0), STMiss-nodet is also able to adapt without

225

0 500 1,000 1,500 2,000 2,500

0.2

0.4

0.6

0.8

1

Mini-batch index (j)

S
E

(P̂
j
,P

j
)

(a) Small rotations at each time

0 500 1,000 1,500 2,000 2,500

10−6

10−3

100

Mini-batch index j

(b) Piecewise Constant Subspace – Large

simple PCA NORST Fed-OA-RSTMiss-nodet

Figure 5.2: Corroborating the claims of Theorem 5.81.

requiring a detection step. Finally, since the updates are always improving, after a certain time,

NORST stops improving the subspace estimates, but STMiss-nodet improves it and gets a better

result.

5.5.2 Fedrated ST-Miss

We also implement Algorithm 12 to corroborate our theoretical claims. We use the exact data

generation method as we did in the centralized setting. To simulate over-air communication, we

replace the inbuilt SVD routine of matlab by a power method code snippet, and by adding iteration

noise. In each iteration, we add i.i.d. Gaussian noise with variance 10−6. The results are presented

in Fig. 5.2. Notice that in both cases, Algorithm 12 works as well as NORST even though NORST

cannot deal with iteration noise. Additionally, as opposed to the centralized setting (Fig. 5.1(b)),

the error of Fed-OA-RSTMiss-nodet in Fig. 5.2 does not improve beyong the iteration noise level

of 10−6.

5.6 References

[1] Alistarh, D., Allen-Zhu, Z., and Li, J. Byzantine stochastic gradient descent. In Ad-
vances in Neural Information Processing Systems (2018), pp. 4613–4623.

[2] Amiri, M. M., and Gündüz, D. Federated learning over wireless fading channels. arXiv
preprint arXiv:1907.09769 (2019).

226

[3] Amiri, M. M., and Gündüz, D. Machine learning at the wireless edge: Distributed stochastic
gradient descent over-the-air. In 2019 IEEE International Symposium on Information Theory
(ISIT) (2019), IEEE, pp. 1432–1436.

[4] Balcan, M.-F., Du, S. S., Wang, Y., and Yu, A. W. An improved gap-dependency
analysis of the noisy power method. In Conference on Learning Theory (2016), pp. 284–309.

[5] Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V.,
Kiddon, C., Konecny, J., Mazzocchi, S., and McMahan, H. B. Towards federated
learning at scale: System design. arXiv preprint arXiv:1902.01046 (2019).

[6] Candes, E. The restricted isometry property and its implications for compressed sensing. C.
R. Math. Acad. Sci. Paris Serie I (2008).

[7] Candès, E. J., Li, X., Ma, Y., and Wright, J. Robust principal component analysis? J.
ACM 58, 3 (2011).

[8] Candes, E. J., and Recht, B. Exact matrix completion via convex optimization. Found.
of Comput. Math, 9 (2008), 717–772.

[9] Cherapanamjeri, Y., Gupta, K., and Jain, P. Nearly-optimal robust matrix completion.
ICML (2016).

[10] Chi, Y., Eldar, Y. C., and Calderbank, R. Petrels: Parallel subspace estimation and
tracking by recursive least squares from partial observations. IEEE Transactions on Signal
Processing (December 2013).

[11] Golub, G. H., and Van Loan, C. F. Matrix computations. The Johns Hopkins University
Press, Baltimore, USA (1989).

[12] Gonen, A., Rosenbaum, D., Eldar, Y. C., and Shalev-Shwartz, S. Subspace learning
with partial information. Journal of Machine Learning Research 17, 52 (2016), 1–21.

[13] Grammenos, A., Mendoza-Smith, R., Mascolo, C., and Crowcroft, J. Federated
pca with adaptive rank estimation. arXiv preprint arXiv:1907.08059 (2019).

[14] Gunduz, D., de Kerret, P., Sidiropoulos, N. D., Gesbert, D., Murthy, C. R.,
and van der Schaar, M. Machine learning in the air. IEEE Journal on Selected Areas in
Communications 37, 10 (2019), 2184–2199.

[15] Hardt, M., and Price, E. The noisy power method: A meta algorithm with applications.
In Advances in Neural Information Processing Systems (2014), pp. 2861–2869.

[16] Horn, R. A., and Johnson, C. R. Matrix analysis. Cambridge university press, 2012.

227

[17] Jain, P., Jin, C., Kakade, S. M., Netrapalli, P., and Sidford, A. Streaming pca:
Matching matrix bernstein and near-optimal finite sample guarantees for oja?s algorithm. In
Conference on learning theory (2016), pp. 1147–1164.

[18] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N.,
Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al. Advances and open
problems in federated learning. arXiv preprint arXiv:1912.04977 (2019).

[19] Konecny, J., McMahan, H. B., Ramage, D., and Richtárik, P. Federated optimiza-
tion: Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527
(2016).

[20] Konecny, J., McMahan, H. N., Yu, F. X., Richtárik, P., Suresh, A. T., and Bacon,
D. Federated learning: Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492 (2016).

[21] Kopsinis, Y., Chouvardas, S., and Theodoridis, S. Distributed robust subspace track-
ing. In 2015 23rd European Signal Processing Conference (EUSIPCO) (2015), IEEE, pp. 2531–
2535.

[22] Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine 37, 3 (2020), 50–60.

[23] Liang, Y., Balcan, M.-F. F., Kanchanapally, V., and Woodruff, D. Improved
distributed principal component analysis. In NIPS (2014), pp. 3113–3121.

[24] Lu, W., and Vaswani, N. Modified basis pursuit denoising (modified-bpdn) for noisy
compressive sensing with partially known support. In IEEE Intl. Conf. Acous. Speech.
Sig.Proc.(ICASSP) (2010).

[25] Mackey, L., Talwalkar, A., and Jordan, M. I. Distributed matrix completion and
robust factorization. The Journal of Machine Learning Research 16, 1 (2015), 913–960.

[26] Mitliagkas, I., Caramanis, C., and Jain, P. Memory limited, streaming pca. In Advances
in neural information processing systems (2013), pp. 2886–2894.

[27] Musco, C., and Musco, C. Randomized block krylov methods for stronger and faster
approximate singular value decomposition. In Advances in Neural Information Processing
Systems (2015), pp. 1396–1404.

[28] Narayanamurthy, P., Daneshpajooh, V., and Vaswani, N. Provable subspace tracking
from missing data and matrix completion. IEEE Transactions on Signal Processing (2019),
4245–4260.

228

[29] Narayanamurthy, P., and Vaswani, N. Provable dynamic robust pca or robust subspace
tracking. IEEE Transactions on Information Theory 65, 3 (2019), 1547–1577.

[30] Narayanamurthy, P., and Vaswani, N. Fast robust subspace tracking via pca in sparse
data-dependent noise. Journal of Selected Areas in Information Theory (2021).

[31] Netrapalli, P., Jain, P., and Sanghavi, S. Low-rank matrix completion using alternating
minimization. In STOC (2013).

[32] Netrapalli, P., Niranjan, U. N., Sanghavi, S., Anandkumar, A., and Jain, P. Non-
convex robust pca. In NIPS (2014).

[33] Qiu, C., Vaswani, N., Lois, B., and Hogben, L. Recursive robust pca or recursive sparse
recovery in large but structured noise. IEEE Trans. Info. Th. (August 2014), 5007–5039.

[34] Recht, B. A simpler approach to matrix completion. Journal of Machine Learning Research
12, Dec (2011), 3413–3430.

[35] Rudelson, M., and Vershynin, R. The littlewood–offord problem and invertibility of
random matrices. Advances in Mathematics 218, 2 (2008), 600–633.

[36] Rudelson, M., and Vershynin, R. Smallest singular value of a random rectangular matrix.
Communications on Pure and Applied Mathematics 62, 12 (2009), 1707–1739.

[37] Teflioudi, C., Makari, F., and Gemulla, R. Distributed matrix completion. In 2012
ieee 12th international conference on data mining (2012), IEEE, pp. 655–664.

[38] Tse, D., and Viswanath, P. Fundamentals of wireless communication. Cambridge univer-
sity press, 2005.

[39] Vershynin, R. High-dimensional probability: An introduction with applications in data sci-
ence, vol. 47. Cambridge university press, 2018.

[40] Wang, C., Eldar, Y. C., and Lu, Y. M. Subspace estimation from incomplete observations:
A high-dimensional analysis. JSTSP (2018).

[41] Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya, C., He, T., and Chan, K.
Adaptive federated learning in resource constrained edge computing systems. IEEE Journal
on Selected Areas in Communications 37, 6 (2019), 1205–1221.

[42] Wu, S. X., Wai, H.-T., Li, L., and Scaglione, A. A review of distributed algorithms for
principal component analysis. Proceedings of the IEEE 106, 8 (2018), 1321–1340.

[43] Xie, C., Koyejo, S., and Gupta, I. Fall of empires: Breaking byzantine-tolerant sgd by
inner product manipulation. arXiv preprint arXiv:1903.03936 (2019).

229

[44] Yang, B. Projection approximation subspace tracking. IEEE Trans. Sig. Proc. (1995), 95–107.

[45] Yang, K., Jiang, T., Shi, Y., and Ding, Z. Federated learning via over-the-air computa-
tion. IEEE Transactions on Wireless Communications (2020).

[46] Yang, Q., Liu, Y., Chen, T., and Tong, Y. Federated machine learning: Concept and
applications. ACM Transactions on Intelligent Systems and Technology (TIST) 10, 2 (2019),
1–19.

[47] Zare, A., Ozdemir, A., Iwen, M. A., and Aviyente, S. Extension of pca to higher
order data structures: An introduction to tensors, tensor decompositions, and tensor pca.
Proceedings of the IEEE 106, 8 (2018), 1341–1358.

[48] Zhang, D., and Balzano, L. Global convergence of a grassmannian gradient descent algo-
rithm for subspace estimation. In AISTATS (2016).

5.7 Appendix A: Proof of Key Lemmas for Theorem 5.81

Proof of Lemma 5.83. Recall from Algorithm 13 that we need solve

ŝi,cs = arg min
s
‖(s)T ci ‖1 s.t.‖Φyt −Φs‖ ≤ ξ

This is a problem of sparse recovery from partial subspace knowledge. To prove the cor-

rectness of the result, we first need to bound the s-level RIC of Ψ = I − P̂t−1P̂
>
t−1 where

s := (2max-outlier-frac-col + max-miss-frac-col) · n. Under the assumptions of Theorem 5.81 (we

only assumed that max-outlier-frac-col ∈ P (1/µr) and max-miss-frac-col ∈ O(1/µr) but the actual

requirement is (2max-miss-frac-col + max-outlier-frac-col) · n ≤ 0.01/µr), and Fact 5.77, we have

that

δs(I − P̂t−1P̂
>
t−1) = max

|T |≤s
‖I>T P̂t−1‖2

≤ max
|T |≤s

(SE(P̂t−1,Pt−1) + ‖I>T Pt−1‖)2

Recall that for t > 1, SE(P̂j ,Pj) ≤ max(0.1 · 0.3j−1εinit + 0.5∆tv, no-lev) ≤ 0.2 and from the

incoherence assumption on Pt’s, the second term above is upper bounded by 0.01. Thus, δs(Φ) ≤

230

0.32 < 0.15. Next, consider the error seen by the modified-CS step,

‖bi‖ = ‖Ψ(`i + vi)‖ ≤
∥∥∥(I − P̂t−1P̂t−1)Ptai

∥∥∥+ ‖vi‖

≤ SE(P̂t−1,Pt) ‖ai‖+ ‖vi‖

≤(SE(P̂t−1,Pt−1) + SE(Pt−1,Pt))
√
µrλ+ + C

√
rλ+

v

≤(0.3t−1εinit + 1.5∆tv)
√
µrλ+ + C

√
rvλ

+
v

under the assumptions of Theorem 5.81, the RHS of the above is bounded by xmin/15. This is why

we have set ξ = xmin/15 in Algorithm 12. Using these facts, and δs(Ψ) < 0.15, we have that

‖ŝi,cs − si‖ ≤ 7ξ = 7xmin/15 < xmin/2

Consider support recovery. From above,

|(ŝi,cs − si)m| ≤ ‖ŝi,cs − si‖ ≤ 7xmin/15 < xmin/2

The Algorithm sets ωsupp = xmin/2. Consider an index m ∈ Tsparse,i. Since |(si)m| ≥ xmin,

xmin − |(ŝi,cs)m| ≤ |(si)m| − |(ŝi,cs)m|

≤ |(si − ŝi,cs)m| <
xmin

2

Thus, |(ŝi,cs)m| > xmin
2 = ωsupp which means m ∈ T̂sparse,i. Hence Tsparse,i ⊆ T̂sparse,i. Next, consider

any m /∈ Tsparse,i. Then, (si)m = 0 and so

|(ŝi,cs)m| = |(ŝi,cs)m)| − |(si)m| ≤ |(ŝi,cs)m − (si)m| <
xmin

2

which implies m /∈ T̂sparse,i and T̂sparse,i ⊆ Tsparse,i implying that T̂sparse,i = Tsparse,i and consequently

that T̂i := Ti ∪ T̂sparse,i = Ti ∪ Tsparse,i.

With T̂sparse,i = Tsparse,i and since Tsparse,i is the support of si, si = ITsparse,iI
>
Tsparse,i

si, and so

ŝi = IT̂i

(
Ψ>T̂i

ΨT̂i

)−1
Ψ>T̂i

(Ψ`i + Ψzi + Ψsi + Ψvi)

= IT̂i

(
Ψ>T̂i

ΨT̂i

)−1
I>T̂i

Ψ(`i + vi) + si + zi

231

Thus, the estimate of the true-data ˆ̀
i = yi − ŝi satisfies

ˆ̀
i = `i + vi − IT̂i

(
Ψ>T̂i

ΨT̂i

)−1
I>T̂i

Ψ(`i + vi)

and thus ei = ˆ̀
i − `i satisfies

ei = −IT̂i
(
Ψ>T̂i

ΨT̂i

)−1
I>T̂i

Ψ(`i + vi) + vi

‖ei‖ ≤
∥∥∥∥(Ψ>T̂i

ΨT̂i

)−1
∥∥∥∥ ‖I>T̂iΨ(`i + vi)‖+ ‖vi‖

≤ 1.2‖bi‖+ ‖vi‖

We next prove Lemma 5.84. But before we prove this, under the conditions of Lemma 5.76,

the result from [30] also shows the following:

‖perturb‖ :=

∥∥∥∥∥ 1

α

∑
i

(ziz
>
i − `i`

>
i)

∥∥∥∥∥
≤

∥∥∥∥∥ 1

α

∑
i

eie
>
i

∥∥∥∥∥+ 2

∥∥∥∥∥ 1

α

∑
i

`ie
>
i

∥∥∥∥∥+ 2

∥∥∥∥∥ 1

α

∑
i

`iv
>
i

∥∥∥∥∥
+ 2

∥∥∥∥∥ 1

α

∑
i

vie
>
i

∥∥∥∥∥+

∥∥∥∥∥ 1

α

∑
i

viv
>
i

∥∥∥∥∥ ,
≤
(

6.6
√
bqf + 4.4

λ+
v

λ−

)
λ− (5.13)

and

λr

(
1

α

∑
i

`i`
>
i

)
≥ 0.99λ−.

Proof of Lemma 5.84. Before we prove There are the following two parts in the proof:

1. First, we show that P̂ is close to P̃ where P̃ is the top r left singular vectors of Z. In

particular, we show that SE(P̂ , P̃) ≤ εPM/2. This relies on application of Lemma 5.78 to

the matrix ZZ>/α with the appropriate parameters.

232

2. Next, we use centralized Principal Components Analysis in Sparse, Data-Dependent Noise

(PCA SDDN) with zi ≡ yi to show that the P̃ is close to the true subspace, P . Here too we

show that SE(P̃ ,P) ≤ εPM/2. Combining the above two results, and the triangle inequality

gives SE(P̂ ,P) ≤ SE(P̂ , P̃) + SE(P̃ ,P) ≤ εPM .

Notice from (5.13), with high probability, the matrix ZZ> has a good eigen-gap, i.e.,

λr(ZZ>) = λr(LL> + perturb) ≥ λr(LL>)− ‖perturb‖

≥ 0.99λ− −
(

7.7
√
bqf + 4.4

λ+
v

λ−

)
λ−

λr+1(ZZ>) ≤ λr+1(LL>) + ‖pertub‖

≤
(

7.7
√
bqf + 4.4

λ+
v

λ−

)
λ−

Under the assumptions of Lemma 5.84, 7.7
√
bqf + 4.4λ+

v /λ
− ≤ 2.5εSE . Thus, for this matrix, R <

0.99 with high probability. The standard deviation of the channel noise in each iteration satisfies,

σc ≤ εPMλ−/10
√
n. Furthermore, since we initialize Fed-PM with Pinit that satisfies SE(Pinit,P) ≤

εinit,PM it follows from second part of Lemma 5.78 that after L = C log(1/(εPM
√

1− ε2init,PM))

iterations, with probability at least 1− L exp(−cr), the output P̂ satisfies SE(P̂ , P̃) ≤ εPM/2.

Next, observe that the conditions required to apply Lemma 5.76 is satisfied under the assump-

tions of Lemma 5.84. Thus, we apply Lemma 5.76 with εSE ≡ εPM/2. This ensures that with

probability at least 1− 10n−10, the eigenvectors of the empirical covariance are close to that of the

the population covariance, i.e., SE(P̃ ,P) ≤ εPM/2.

Combining the above two results we have with probability at least 1 − L exp(−cr) − 10n−10,

SE(P̂ ,P) ≤ SE(P̂ , P̃) + SE(P̃ ,P) ≤ εPM .

The proof of the subspace detection step (Lemma 5.88) is similar to that of [30] applied with

Lemma 5.79.

Proof of Lemma 5.78. The proof of Lemma 5.78 is a special case of Lemma 5.91 that is proved

in the Supplementary Material. The proof of Lemma 5.79 is also provided in the Supplementary

Material.

233

The Supplementary Material is organized as follows. In Appendix 5.8, we provide the setting,

algorithm and the guarantee for (a) a generalization of Theorem 5.73 wherein we provide our result

to provably detect and track large, but infrequent subspace changes; and (c) a generalization of

Theorem 5.81 wherein we again deal with large infrequent subspace changes but in under the

federated over-air constraints. In Appendix 5.9, we provide the guarantee for robust ST-miss in a

centralized setting. And finally, in Appendix 5.10, we prove the convergence of Algorithm 11, i.e.,

Lemma 5.78 and Lemma 5.79 (in fact, we prove a stronger result there, but only provide a special

case of it in the main paper).

5.8 Appendix B: Extensions of Theorem 5.73 and Theorem 5.81

5.8.1 Generalization to detect and track larger subspace changes for centralized ST-

miss

When ∆tv is small enough, the bound given by Theorem 5.73 holds and is better than that

for simple PCA given in Theorem 5.74. When ∆tv is very small but there are occasional large

changes, then the guarantee of Theorem 5.75 applies. However, the result does not guarantee

change detection (only tracking), this is because the algorithm itself does not contain a detection

step. In this section, we provide a modification of our algorithm that contains a detection step and a

corollary that also guarantees quick enough detection. The proof is essentially a direct combination

of the ideas given in the main paper and those used in [28] for quick and reliable subspace change

detection.

A simple modification to Algorithm 10 given in Algorithm 14 allows us to deal with such a

model. Our next result shows that under such a subspace change model, we are able to recover the

result of [28]. Concretely, consider the following subspace change model

Definition 5.85 (Small frequent and abrupt infrequent subspace change model). Assume that the

γ-th large subspace changes occurs at t = tγα for τ = 1, · · ·Γ such that tγ+1 − tγ > (J∗ + 2) with

J∗ := C log(1/ε) where ε chosen by the user denotes the desired final accuracy. In addition, assume

234

that

min
γ∈[Γ]

∆tγ ≥ ∆large ≥ ∆tv ≥ max
{j:j 6=tγ ,γ∈[Γ]}

∆j

Notice that this is a generalization of the “model” considered in previous literature on provable

subspace tracking [28] and the model considered above.

To deal with the large subspace changes, we need a few minor changes to Algorithm 10, which

we briefly summarize below. Firstly, the algorithm now has two phases, the subspace update phase

and the subspace detect phase, akin to the algorithms of [28, 30]. Second, as opposed to the

algorithms studied in [28, 30], the current algorithm updates the subspace even in the detect phase

(this is necessary since we only assume an approximate piecewise-constant subspace change model).

The pseudo-code is provided as Algorithm 14 in the Appendix. With these changes, we have the

following result

Corollary 5.86 (Subspace tracking in the presence of infrequent, abrupt changes). Assume that

data satisfies the subspace change model in Definition 5.85 such that ∆large > 9
√
f max(0.1 ·

0.3J
∗−1 + 1.5∆tv,no-lev) Then, under the conditions of Theorem 5.73 and using Algorithm 14,

with probability at least 1− dn−10, the γ-th large subspace change is detected within 1 mini-batch of

α frames, i.e., tγ ≤ t̂γ ≤ tγ + 1 and

SE(P̂j ,Pj) ≤

max(0.1 · 0.25,no-lev), if j∗ = 1

max(0.1 · 0.3j∗−1 + 0.5∆tv,no-lev), if j∗ ∈ [2, J∗]

ε, if j∗ > J∗

where j∗ = minγ(t̂γ − j)

Proof of Corollary 5.86. The proof follows from the idea of the result of [30]. The analysis of the

subspace update step is exactly as mentioned in the proof of Theorem 5.73. The proof of the

subspace update step requires the following changes to [30, Lemma 6.20]: consider the case when

the subspace has not changed, but K = C log(1/ε) subspace updates have been completed. In this

235

case, qK (the subspace error between the previous estimate and the current actual subspace) from

[30, Lemma 6.20] gets replaced with ε+ ∆tv using the triangle inequality for subspace errors. Next

consider the case when the subspace has changed by a quantity of ∆large. In this case, q1 (the

subspace error between the current algorithm estimate and the subspace after the large subspace

change) gets replaced with ε+∆tv+∆large. Once we make these changes, the rest of the proof follows

exactly in the same fashion, and we get that (i) if the subspace has changed, λmax(ΦL̂jL̂
>
j Φ) ≥

5(ε+ ∆tv + ∆large)
2λ+, and (ii) if the subspace has not changed, λmax(ΦL̂jL̂

>
j Φ) ≤ 1.5ε2λ+. Thus,

under the conditions of Corollary 5.86, as long as ωevals = 2ε2λ+, w.h.p. the large subspace change

is detected.

Generalization to detect and track large subspace changes in FedOA-RST-miss.

Recall that Pt is the matrix of top-r left singular vectors of data, Yt = [Y1,t, · · · ,YK,t]. Assume

that at t = tγ for γ = 1, · · · ,Γ, such that tγ+1 − tγ > (J∗ + 2) with J∗ = C log(1/ε) where ε is

chosen by the user to denote the desired final accuracy. In addition, assume that

min
γ∈[Γ]

SE(Ptγ+1,Ptγ) ≥ ∆large

max
{t:t6=tγ ,γ∈[Γ]}

SE(Pt+1,Pt) ≤ ∆tv

Corollary 5.87. Assume that the data satisfies the subspace change model specified above such

that ∆large > 9
√
f max(0.1 · 0.3J∗−1 + 1.5∆tv,no-lev) . Then, under the conditions of Theorem 5.81

and with minor modifications to Algorithm 12, with probability at least 1 − dn−10, the γ-th large

subspace change is detected within 1 time instant, i.e., tγ ≤ t̂γ ≤ tγ + 1 and

SE(P̂t,Pt) ≤

max(0.1 · 0.25,no-lev), if j∗ = 1

max(0.1 · 0.3j∗−1 + 0.5∆tv,no-lev), if j∗ ∈ [2, J∗]

ε, if j∗ > J∗

where j∗ = minγ(t̂γ − t)

236

Algorithm 14 STMiss – Infrequent Abrupt Changes

Require: Y , T
1: Parameters: α, ε,

2: Init: P̂1 ← r-SV D[y1, · · · ,yα], j ← 2, k ← 2, phase← update, K = C log(1/ε)

3: for j ≥ 2 do

4: if k = 1 then

5: P̂j ← r-SV D[y(j−2)α+1, · · · ,y(j−1)α]

6: else

7: if phase = update then

8: Ψ← I − P̂j−1P̂
>
j−1

9: for all t ∈ ((j − 1)α, jα] do

10: ỹt ← Ψyt; ˆ̀
t ← yt − ITt(ΨTt)

†ỹt.

11: end for

12: P̂j ← r-SV D[ˆ̀(j−1)α+1, · · · , ˆ̀
jα]

13: k ← k + 1

14: if k = K then

15: phase← detect

16: end if

17: end if

18: end if

19: if phase = detect then

20: if λmax(Φ
ˆ̂
Lj

ˆ̂
L>j Φ) ≥ 2αε2λ+ then

21: phase← update, k ← 1

22: else

23: Repeat lines 5 - 12

24: end if

25: end if

26: end for

Ensure: P̂j , ˆ̀
t,

ˆ̂
`t.

For the proof of Corollary 5.87, the approach is the same as Corollary 5.86. One key difference

is how we perform the subspace detection step since this needs to be done while obeying the

federated, over-air data sharing constraints. To do this, we leverage Lemma 5.79 and derive the

following result:

Lemma 5.88 (Subspace Change Detection). Consider α data vectors at time t > tγ−1. Assume

that the (t − 1)-th subspace has been estimated to ε-accuracy, i.e., SE(P̂t−1,Pt−1) ≤ ε. Let the

237

number of iterations of Fed-PM be Ldet = C log nr. Let the detection threshold ωevals = 2ε2αλ+.

Then, under the assumptions of Theorem 5.81, the following holds.

1. If the subspace changes, i.e., t > tγ. At this time, with probability at least 1− 10n−10,

λ̂det ≥ 0.9λmax

(
ΦL̂tL̂

>
t Φ
)
≥ 4.5(ε+ ∆tv + ∆large)

2αλ+

2. If the subspace has not changed, then with probability at least 1− 10n−10,

λ̂det ≤ 1.1λmax

(
ΦL̂tL̂

>
t Φ
)
≤ 1.6ε2αλ+

5.9 Appendix C: Robust Subspace Tracking with Missing Data

In this section, we provide the concrete problem setting, algorithm and result for RST-miss in

the centralized setting. Assume that at each time t, we observe an n-dimensional data stream of

the form

yt = PΩt(
˜̀
t + gt), t = 1, 2, · · · , d (5.14)

where gt’s are the sparse outliers and ˜̀
t, PΩt(·) etc are defined exactly as done before. We let

st := PΩt(gt) and let Tsparse,t denote the support of st. Notice that it is impossible to recover gt on

the set Tt and thus we only work with st in the sequel. Furthermore, by definition, st is supported

outside Tt and thus Tt and Tsparse,t are disjoint. With st defined as above, the measurements can

also be expressed as

yt = PΩt(
˜̀
t) + st

= ˜̀
t − ITtI

>
Tt

˜̀
t + st

:= ˜̀
t + zt + st = `t + zt + st + vt.

One main difference required in the algorithm is how we estimate the sparse vector, s̃t = zt + st.

Recovering s̃t is a problem of sparse recovery with partial support knowledge, Tt. In this paper,

we use noisy modified CS [24] which was introduced to solve exactly this problem. Another main

238

Algorithm 15 Robust Subspace Tracking with missing entries (RST-miss)

Require: Y , T
1: Parameters: α, ωevals, ξ

2: Init: P̂1 ← AltProj[y1, · · · ,yα], j ← 2

3: Lines 3-13 of Algorithm 10 with line 6 replaced by

ỹt ← Ψyt
ŝt,cs ← arg mins ‖(s)(Tt)c‖1 s.t. ‖ỹt −Ψs‖ ≤ ξ.
T̂t ← Tt ∪ {m : |(ŝt,cs)m| > ωsupp}
ˆ̀
t ← yt − IT̂t(ΨT̂t)

†ỹt.

4: Line 11 replaced by

ỹt ← Ψ̃yt
ŝt,cs ← arg mins ‖(s)(Tt)c‖1 s.t. ‖ỹt − Ψ̃s‖ ≤ ξ.
T̂t ← Tt ∪ {m : |(ŝt,cs)m| > ωsupp}
ˆ̂
`t ← yt − IT̂t(Ψ̃T̂t)

†ỹt.

Ensure: P̂j , ˆ̀
t,

ˆ̂
`t, T̂t.

difference is in the initialization step. Observe that due to the presence of sparse outliers, a simple

PCA step does not ensure a “good enough” initialization in this case.

Assumptions. We need all the assumptions from the previous section. In addition, it is well

known from the RPCA literature that the fraction of outliers in each row and column of the matrix

Sj needs to be bounded.

Definition 5.89 (Sparse outlier fractions). Consider the sparse outlier matrix Sj :=

[s(j−1)α+1, . . . , sjα] . We use max-outlier-frac-col (max-outlier-frac-row) to denote the maxi-

mum of the fraction of non-zero elements in any column (row) of this matrix. Also define

xmin = mint∈((j−1α,jα] mini∈Tsparse,t |(st)i|.

Algorithm and Main Result.

We have the following result for robust subspace tracking with missing entries

Theorem 5.90 (Robust Subspace Tracking with missing entries). Consider Algorithm 12. Assume

that no-lev ≤ 0.2. Set ωsupp = xmin/2 and ξ = xmin/15. Assume that the following hold:

1. At t = 1 we are given a P̂1 s.t. SE(P̂1,P1) ≤ εinit.

2. Incoherence: Pj’s satisfy µ-incoherence, and at’s satisfy statistical right µ-incoherence;

239

3. Missing Entries: max-miss-frac-col ∈ O(1/µr), max-miss-frac-row ∈ O(1);

4. Sparse Outliers: max-outlier-frac-col ∈ O(1/µr), max-outlier-frac-row ∈ O(1);

5. Subspace Model: let ∆tv := maxj SE(Pj−1,Pj) s.t.

0.3εinit + 0.5∆tv ≤ 0.28 and

C
√
rλ+(0.3j−1εinit + 0.5∆tv) +

√
rvλ

+
v ≤ xmin

then, with probability at least 1− 10dn−10, for all j > 1, we have

SE(P̂j ,Pj)

≤ max(0.3j−1εinit + ∆tv(0.3 + 0.3 + 0.32...+ 0.3j−1),no-lev)

< max(0.3j−1εinit + 0.5∆tv,no-lev)

Also, at all j and t ∈ ((j − 1)α, jα], ‖ˆ̂`t − `t‖ ≤ 1.2 · SE(P̂j ,Pj)‖ ˜̀
t‖+ ‖vt‖.

5.10 Appendix D: Convergence Analysis for FedPM

5.10.1 Eigenvalue convergence

First we present the proof of the eigenvalue convergence result (Lemma 5.79). To our best

knowledge, this has not been studied in the federated ML literature.

Proof of Lemma 5.79. We now wish to compute the error bounds of in convergence of eigenvalues.

To this end, at the end of L iterations, we compute Σ̂ = Û>LAÛL + Û>LWL. The intuition is that

if the eigenvectors are estimated well, then this matrix will be approximately diagonal (off diagonal

entries ≈ ε), and the diagonal entries will be close to the true eigenvalues. Furthermore, in the

application of this result for the Subspace Change detection problem, we will only consider the

240

largest eigenvalue of Σ̂ and thus we have

λmax(Σ̂) = λmax(Û>LAÛL + Û>LWL)

= λmax(Σ + (Û>LAÛL −Σ) + Û>LWL)

≥ λmax(Σ)− ‖Û>LAÛL −Σ‖ − ‖Û>LWL‖

≥ σ1 − ‖Û>LAÛL −Σ‖ − ‖WL‖

The second term can be upper bounded as follows

‖Û>LAÛL −Σ‖

= ‖(Û>LUΣU>ÛL −Σ) + Û>LU⊥Σ⊥U
>
⊥ ÛL‖

≤ ‖Û>LUΣU>ÛL −Σ‖+ ‖Û>LU⊥Σ⊥U
>
⊥ ÛL‖

≤ ‖Û>LUΣU>ÛL −Σ‖+ ‖Σ⊥‖‖U>⊥ ÛL‖2

= ‖Û>LUΣU>ÛL −Σ‖+ ‖Σ⊥‖‖U⊥U>⊥ ÛL‖2

≤ ‖Û>LUΣU>ÛL −Σ‖+ σr+1SE2(ÛL,U)

The first term above can be bounded as

‖Û>LUΣU>ÛL −Σ‖

= ‖(I − I + Û>LU)Σ(U>ÛL + I − I)−Σ‖

≤ ‖(Û>LU − I)Σ‖+ ‖Σ(U>ÛL − I)‖

+ ‖(Û>LU − I)Σ(U>ÛL − I)‖

≤ σ1(2‖I − Û>LU‖+ ‖I − Û>LU‖2)

≤ σ1(2(1− σr(Û>LU)) + (1− σr(Û>LU))2)

and since SE2(ÛL,U) = 1 − σ2
r (Û

>
LU) ≤ ε2 and thus we get that σr(Û

>
LU) ≥

√
1− ε2 ≥ 1 − ε2.

Finally, the assumption on the channel noise implies that with high probability, ‖WL‖ ≤ C
√
nσc ≤

1.5σrε. Thus,

λmax(Σ̂) ≥ σ1(1− 4ε2)− σr+1ε
2 − σrε

241

Algorithm 16 FedPM: Federated Noise-Tolerant Power Method

Require: Z, r, L, η, K nodes, for each i ∈ Ik, data yi

1: At central server, Ũ0
i.i.d.∼ N (0, I)n×r; Û0 ← Ũ0, transmit to all K workers.

2: for l = 1, . . . , Lη do

3: At k-th node, do Ũk,l = ZkZ
>
k Ûl−1

4: All k nodes transmit Ũk,l synchronously to the central server.

5: Central server receives Ũη :=
∑

k Ũk,l + Wk,l, with
∑

kWk,l = Wl.

6: Ûl ← Ûl−1

7: if (l mod η) = 0 then ÛlRl
QR← Ũl end if

8: Central server broadcasts Ûl to all nodes

9: end for

10: All k nodes compute ZkZ
>
k ÛL, transmit synchronously to central server

11: Central server receives B =
∑

k ZkZ
>
k ÛL + WL, computes the top eigenvalue, σ̂1 =

λmax(Û>LB).

Ensure: ÛL, σ̂1.

We also get

λmax(Σ̂) ≤ λmax(Û>LBB>ÛL) + ‖WL‖

≤ ‖ÛL‖2‖BB>‖+ ‖WL‖ = λmax(BB>) + 1.5σrε

This completes the proof.

5.10.2 The Noise Tolerant FedOA-PM, Algorithm, and Guarantee

Next, we present a “robust” version of the FedOA-PM algorithm. As mentioned earlier, by

normalizing the subspace estimates once every η ≥ 1 iterations allows for a larger noise tolerance

than the vanilla FedOA-PM algorithm. This is summarized in Algorithm 16 and the main result

is provided below.

Before we state the main result, we need to define the following quantities. For this section we

use A = ZZ> and let A
EV D

= UΣU> + U⊥Σ⊥U
>
⊥ denote its eigenvalue decomposition. Recall

that U ∈ Rn×r denote the principal subspace that we are interesting in estimating. We also use

σi to denote the i-th eigenvalue of A with σ1 ≥ · · · ≥ σr > σr+1 ≥ · · · ≥ σn ≥ 0. We also let the

ratio of (r + 1)-th to r-th eigenvalue, R := σr+1/σr, the noise to signal ratio, NSR := σc/σr, and

R̃ := max(R, 1/σr). We use SEl := SE(Ûl,U).

242

We have the following main result:

Theorem 5.91. Consider Algorithm 16 with initial subspace estimation error SE0.

1. Let η = 1. Assume that R < 0.99. If, at each iteration, the channel noise Wl satisfies NSR <

cmin

(
ε√
n
, 0.2

√
1−SE2

l−1

r

)
then, after L = Ω

(
1

log(1/R)

(
log 1

ε + log 1√
1−SE2

0

))
iterations, with

probability at least 1− L exp(−cr), SE(U , ÛL) ≤ ε.

2. Consider Algorithm 11 with η > 1. If, σr > 1, and if NSR <

cmin

(
ε√
n
· 1√

ηRη−1 , 0.2
√

σ2
r−1
σ2
r
·
√

1−SE2
(l−1)η

r

)
, then the above conclusion holds.

3. If Ũ0
i.i.d∼ N (0, I)n×r, then SE0 = O(

√
1− 1/γnr) with probability 1− 1/γ.

To understand the above theorem, first consider η = 1. In this case, we require NSR
√
n < ε to

achieve ε-accurate recovery of the subspace. In this setting, with a random initialization, our result

essentially recovers the main result of [15, 4]. But we can choose to pick η > 1. To understand its

advantage, suppose that λr > 1.5 (this is easy to satisfy by assuming that all the data transmitted

is scaled by a large enough factor). Then, clearly, λ2
r/(λ

2
r−1) < 3 and so the first term in the upper

bound of NSR dominates. Thus, as η is increased, we only require NSR
√
n · √ηRη−1 ≤ ε which is

a significantly weaker requirement. Thus, a larger η means we can allow the noise variance to be

larger. However, we cannot pick η too large because it will lead to numerical problems (bit overflow

problems) and may also result in violation of the transmit power constraint. As an example, if we

set η = C log n, for a constant C that is large enough (depends on R̃), then the we only require

(NSR
√
n/ log n) ≤ ε which provides a log n factor of noise robustness. Observe that the number of

iterations needed, L, depends on the initialization. If SE0 < c0 with c0 being a constant, then we

only need L = Ω
(

1
log(1/R) log(1/ε)

)
iterations (which we leverage in the ST-miss result). Finally,

if we use random initialization we need L = Ω
(

1
log(1/R) log(nr/ε)

)
, i.e., O(log nr) more iterations.

We provide a comparison with [15, 4] in Table 5.1.

243

Table 5.1: Comparing bounds on channel noise variance σ2
c and on number of iterations L. Let

gap1 := λr − λr+1, gapq := λr − λq+1 for some r ≤ q ≤ r′. Also, we assume ε ≤ c/r.

Noisy Power Method This Work

[15, 4]

η = 1 σc = O
(

gap1ε√
n

)
σc = O

(
λrε√
n

)
,

r′ = r R < 0.99

Random init L = Ω
(

λr
gapq

log
(
n
ε

))
L = Ω

(
1

log(1/R) log
(
n
ε

))
Good init - L = Ω

(
1

log(1/R) log
(

1
ε

))
(SE0 ≤ c0)

η = 1 σc = O
(

gapqε√
n

)
–

r′ > r

η > 1 – σc = O
(
λrε
Rηη

)
,

r′ = r R < 0.99, λr > 1

η = O(log n) – σc = O
(
λrεn
logn

)
,

r′ = r R < 0.99, λr > 1

5.10.3 Proof of Theorem 5.91

Before we state the proof, we define two auxiliary quantities

Γ2
num(η) :=

1 + σ2
r+1 + σ4

r+1 + . . . σ2η−2
r+1

σ2η−2
r

,

Γ2
denom(η) :=

1 + σ2
r + σ4

r + · · ·+ σ2η−2
r

σ2η−2
r

Intuitively, Γnum(η) captures the effect of the ratio of the “effective channel noise orthogonal to

the signal space”, to the signal energy, while Γdenom(η) captures the “effective channel noise along

the signal space” and the signal energy. The following lemma bounds the reduction in error from

iteration (l − 1)η to lη.

Lemma 5.92 (Descent Lemma, general η). Consider Algorithm 16. Assume that R < 0.99. With

probability at least 1− exp(−cr), the following holds:

SElη ≤
Rη SE(l−1)η +

√
n NSR Γnum(η)

0.9
√

1− SE2
(l−1)η −

√
r NSR Γdenom(η)

244

By recursively applying the above lemma at each iteration, we have the following. It assumes

that the initial subspace estimate has error SE0 := SE(Ũ0,U). The proof is provided in Appendix

5.10.

Proof of Lemma 5.92. Consider the setting where we normalize our subpsace estimates every η

iterations. In other words, we start with a basis matrix estimate at l = l0, and then analyze the

subspace error after η iterations. In this case, the subspace update equations can be written as

Ũl0+1 = AÛl0 + Wl0+1

Ũl0+2 = AŨl0+1 + Wl0+2 = A2Ûl0 + AWl0+1 + Wl0+2

...

Ũl0+η = Ũl = AηÛl0 +

η∑
i=1

Aη−iWl0+i

Recall that Ûl0
QR
= Ũl0Rl0 . Thus, we have

Ũl = AηŨl0R
−1
l0

+

η∑
i=1

Aη−iWl0+i

= Aη(UU>Ũl0 + U⊥U
>
⊥ Ũl0)R−1

l0

+

η∑
i=1

Aη−i(UU>Wl0+i + U⊥U
>
⊥Wl0+i)

= UΣη(U>Ũl0)R−1
l0

+ U⊥Ση
⊥(U>⊥ Ũl0)R−1

l0

+

η∑
i=1

[
UΣη−i(U>Wl0+i) + U⊥Ση−i

⊥ (U>⊥Wl0+i)
]

245

and thus, SE(U , Ûl) = SE(U , Ũl) = ‖U>⊥ ŨlR
−1
l ‖ simplifies to

SE(U , Ûl)

=

∥∥∥∥∥
[
Ση
⊥(U>⊥ Ũl0)R−1

l0
+

η∑
i=1

Ση−i
⊥ (U>⊥Wl0+i)

]
R−1
t

∥∥∥∥∥
≤

(
‖Ση
⊥‖‖U

>
⊥ Ũl0R

−1
l0
‖+

∥∥∥∥∥
η∑
i=1

Ση−i
⊥ (U>⊥Wl0+i)

∥∥∥∥∥
)
‖R−1

t ‖

=

(
‖Ση
⊥‖SE(U , Ũl0) +

∥∥∥∥∥
η∑
i=1

Ση−i
⊥ (U>⊥Wl0+i)

∥∥∥∥∥
)
‖R−1

t ‖

≤
‖Ση
⊥‖SE(U , Ûl0) +

∥∥∥∑η
i=1 Ση−i

⊥ (U>⊥Wl0+i)
∥∥∥

σr(Rt)

We also have that

σ2
r (Rt) = σ2

r (Ũt)

= λmin((UU>Ũt + U⊥U
>
⊥ Ût)

>(UU>Ũt + U⊥U
>
⊥ Ût))

≥ λmin(Ũ>t UU>Ût) = σ2
r (U

>Ût)

=⇒ σr(U
>Ũt) = σr

(
Ση

(
U>Ûl0 +

η∑
i=1

Σ−iU>Wl0+i

))

≥ σηr

[
σr(U

>Ûl0)−

∥∥∥∥∥
η∑
i=1

Σ−iU>Wl0+i

∥∥∥∥∥
]

We define SE(U , Ũl0) = SE(U , Ûl0) = SEl0 and R = σr+1/σr, R̃ = max(1, σr+1)/σr and thus

we have

SE(U , Ûl)

≤
‖Ση
⊥‖SE(U , Ûl0) +

∥∥∥∑η
i=1 Ση−i

⊥ (U>⊥Wl0+i)
∥∥∥

σηr

[√
1− SE2(U , Ũl0)− ‖

∑η
i=1 Σ−iU>Wl0+i‖

]
≤
RηSEl0 + σ−ηr ‖

∑η
i=1 Ση−i

⊥ U>⊥Wl0+i‖√
1− SE2

l0
− ‖

∑η
i=1 Σ−iU>Wl0+i‖

notice that the entries of U>Wl0+i and U>⊥Wl0+i are i.i.d. Gaussian r.v’s with variance σ2
c .

Next we define the matrix M =
∑η

i=1 Ση−i
⊥ (U>⊥Wl0+i) and we apply Theorem 5.93 to M . We can

246

apply this theorem because we know that each entry of M is a weighted sum of η indepdendent

Gaussian r.v.’s. In other words

Mjk =

η∑
i=1

(σ⊥)η−ij (U>⊥Wl0+i)jk

=⇒ Mjk ∼ N

(
0, σ2

c

η∑
i=1

(λ⊥)
2(η−i)
j

)

=⇒ max
jk
‖(M)jk‖ψ2 = σc

√√√√ η∑
i=1

σ
2(η−i)
r+1

Recall that there is a factor of σ−ηr multiplying M so effectively, the sub-Gaussian norm is K =

σ−ηr σc

√∑η
i=1 σ

2(η−i)
r+1 = NSR · Γnum(η). Now, using Theorem 5.93, we get that with probability at

least 1− e−ε2

‖
η∑
i=1

Ση−i
⊥ U>⊥Wl0+i‖ ≤ CNSR · Γnum(η) · (

√
n− r +

√
r + ε)

and now picking ε = 0.01
√
n followed by simple algebra yields

Pr

(
‖

η∑
i=1

Ση−i
⊥ U>⊥Wl0+i‖ ≤

√
nNSR · Γnum(η)

)

≥ 1− exp(−cn)

Next consider the denominator term. Again, we notice that the matrixM =
∑η

i=1 Σ−iU>Wl0+i

has entries that are gaussian r.v.’s and are independent. Moreover, the sub Gaussian norm bound

is

Mjk =

η∑
i=1

σ−ij (U>Wl0+i)jk

=⇒ Mjk ∼ N

(
0, σ2

c

η∑
i=1

σ−2i
j

)

=⇒ max
jk
‖(M)jk‖ψ2 = σc

√√√√ η∑
i=1

σ−2i
r := NSR · Γdenom(η)

Now we apply Theorem 5.93 to get that with probability 1− exp(−ε2)∥∥∥∥∥
η∑
i=1

Σ−iU>Wl0+i

∥∥∥∥∥ ≤ NSR · Γdenom(η) · (2
√
r + ε)

247

picking ε = 0.01
√
r yields that

Pr

(∥∥∥∥∥
η∑
i=1

Σ−iU>Wl0+i

∥∥∥∥∥ ≤ √rNSR · Γdenom(η)

)

≥ 1− exp(−cr)

This completes the proof of Lemma 5.92.

Proof of Theorem 5.91. The idea for proving Theorem 5.91 is a straightforward extension from

Lemma 5.92. Consider η = 1, and assume that the initial subspace estimtate, Ũ0 satisfies

SE(Ũ0,U) = SE0 < 1 we know that with probability 1− exp(−cr)− exp(−cn),

SE(Ũη,U) ≤ RηSE0 +
√
nNSRΓnum(η)

0.9
√

1− SE2
0 −
√
rNSRΓdenom(η)

=
RSE0 +

√
nNSR

0.9
√

1− SE2
0 −
√
rNSR

thus, as long as NSR ≤ 0.2

√
1−SE2

0
r the denominator is positive. Next, to achieve an ε-accurate

estimate, we note that the second term in the numerator is the larger term (since R < 1 and this

goes to 0 with every iteration) and thus as long as NSR ≤ ε√
n

we can ensure that the numerator is

small enough. Combining the two bounds, followed by a union bound over L iterations gives the

final conclusion.

Finally, consider the case of η > 1 and the l-th iteration. Assume that σr > 1. This is

used to simplify the Γdenom(η) expression as follows: Γ2
denom(η) = (1 + σ2

r + · · · + σ2η−2
r)/σ2η−2

r =∑η−1
i=0 1/σ2i

r ≤
∑∞

i=0 1/σ2i
r = σ2

r
σ2
r−1

. Using the same reasoning as in the η = 1 case, as long as

NSR ≤ 0.2

√
σ2
r − 1

σ2
r

·

√
1− SE2

(l−1)η

r

the denominator is positive. We also have that Γ2
num(η) =

∑η
i=1 σ

2(η−i)
r+1 /σ2η

r ≤ ηR2η−2. Thus, as

long as NSR ≤ ε√
n
· 1√

ηRη−1 the first term of the numerator is small enough and this gives us the

final result.

Random Initialization Lemma. Finally, we provide the proof for random initialization.

This is a well known result as shown in [36, 15] but we prove it here for completeness.

248

Proof of Item 3 of Theorem 5.91. The proof follows by application of Theorem 5.93, 5.94 to a stan-

dard normal random matrix, and definition of principal angles. Recall that (Ũ0)ij
iid∼ N (0, 1) and

consider its reduced QR decomposition, Ũ0 = Û0R0. We know that

SE2(Ũ0,U) = ‖(I − Û0Û
>
0)U‖2 = λmax(I −U>Û0Û

>
0 U)

= 1− λmin(U>Û0Û
>
0 U)

= 1− λmin(U>Ũ0R
−1
0 (R−1

0)>Ũ>0 U)

(a)

≤ 1− λmin(U>Ũ0Ũ
>
0 U)λmin(R−1

0 (R−1
0)>))

= 1− σ2
min(U>Ũ0)

‖Ũ0‖22

where (a) follows from Ostrowski’s Theorem (Theorem 4.5.9, [16]) and the last relation follows since

reduced qr decomposition preserves the singular values. It is easy to see that (U>Ũ0)ij ∼ N (0, 1).

We can apply Theorem 5.94 to get that with probability at least 1− exp(−cr)− (c/γ),

σmin(U>Ũ0) ≥ c(
√
r −
√
r − 1)/γ

and we also know that
√
r −
√
r − 1 = O(1/

√
r). Additionally, the denominator term is bounded

using Theorem 5.93 as done before and thus, with probability 1− exp(−ε2),

‖Ũ0‖ ≤ C(
√
n+
√
r + ε)

and now picking ε = 0.01
√
n we get that with probability at least 1−exp(−cn)−exp(−cr)−(1/cγ),

SE2(Ũ0,U) ≤ 1− 1

γnr

which completes the proof.

While invoking the above result, to simplify notation, we set γ = 10.

5.10.4 Numerical Verificaion of Theorem 5.91

We generate S = UΛV T + U⊥Λ⊥V
T
⊥ with U∗ = [U ,U⊥], V ∗ = [V ,V⊥] being orthonormal

matrices of appropriate dimensions. We then set Y = SST and the goal is to estimate the span of

249

100 200 300 400 500

10−10

10−5

100

Number of Iterations (l)

S
E

(Û
l,
U

)

(a) Varying σc and η

η = 1, σc = 10−4 η = 10, σc = 10−4

η = 1, σc = 10−8 η = 10, σc = 10−8

100 200 300 400 500

10−7

10−4

10−1

Number of Iterations (l)

S
E

(Û
l,
U

)

(b) Varying the EigenGap, R

R = 0.91

R = 0.30

Figure 5.3: Numerical verification of Theorem 5.91: Left: increasing η increases robustness to
noise; Right: Increasing the “gap” helps achieve faster, better convergence.

the n× r dimensional matrix, U . We choose n = 1000 and r = 30. We consider two settings where

Λ = 1.1I, Λ⊥ = I so that R = 0.91; and Λ = 3.3I, Λ⊥ = I so that R = 0.33. At each iteration

we generate channel noise as i.i.d. N (0, σ2
c). We verify the claims of Theorem 5.91 and (i) show

that choosing a larger value of η considerably increases robustness to noise. We set R = 0.91, and

consider η = 1, 10 and σc = 10−4, 10−4. See from Fig. 5.3(a) that increasing η has a similar effect

as that of reducing σc (the η = 10, σc = 10−8 plot overlaps with η = 1, σc = 10−8); and (ii) in Fig.

5.3(b) we show that choosing a smaller value of R speeds up convergence, and also increases noise

robustness. Here we use σc = 10−8 and consider two eigengaps, R = {0.91, 0.30}.

5.11 Appendix E: Preliminaries

The following result is Theorem 4.4.5, [39]

Theorem 5.93 (Upper Bounding Spectral Norm). Let A be a m×n random matrix whose entries

are independent zero-mean sub-Gaussian r.v.’s and let K = maxi,j ‖Ai,j‖ψ2. Then for any ε > 0

with probability at least 1− 2 exp(−ε2),

‖A‖ ≤ CK(
√
m+

√
n+ ε)

The following result (Theorem 1.1, [36]) bounds the smallest singular value of a random rect-

angular matrix.

250

Theorem 5.94 (Lower Bounding Smallest Singular Value for Rectangular matrices). . Let A be a

m× n random matrix whose entries are independent zero-mean sub-Gaussian r.v.’s. Then for any

ε > 0 we have

σmin(A) ≥ εCK(
√
m−

√
n− 1)

with probability at least 1− exp(−cKn)− (cKε)
m−n+1. Here, K = maxi,j‖Ai,j‖ψ2.

251

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

In this work we designed and analyzed provable algorithms for learning and tracking low-

dimensional linear subspaces. We showed that under mild conditions, we can efficiently learn,

detect, and track subspaces. In particular we considered the problem of tracking the underlying

subspace in presence of gross outliers in Chapters 2 and 3. In Chapter 4, we also allowed for missing

data due to failures in data acquisition, and transmission pipeline. In Chapter 5, we studied the

subspace learning problem in a federated setting which also takes into account the data being

available to a central server in a distributed fashion. In all our results, we show that our algorithm

enjoys several desirable properties such as fast run time, improved outlier tolerance, and in some

cases, near-optimal memory and sample complexity.

There are several avenues for possible future work (a) an immediate extension of Chapter 5 is to

provide a guarantee for differentially private (robust) subspace tracking wherein, one deliberately

adds noise to each algorithm iterate so that given the output, it is not possible for a malicious

agent to ascertain whether a particular data point exists in the database or not; (b) whereas we

considered learning linear subspaces in all work, it is certainly possible to extend this to learning

non-linear low-dimensional models (such as manifolds); and finally, (c) extending our results to the

case where measurements are a (3-rd order) tensor rather than a matrix would provide more room

to exploit the underlying low-dimensional structure.

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

28647893

2021

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 References

	2. MODEL-BASED ROBUST SUBSPACE TRACKING
	2.1 Introduction
	2.1.1 Notation and Problem Setting
	2.1.2 Related Work and our Contributions
	2.1.3 The need for a piecewise constant model on subspace change
	2.1.4 Chapter Organization

	2.2 The simple-ReProCS Algorithm and its Guarantee
	2.2.1 Simple-ReProCS (s-ReProCS)
	2.2.2 Assumptions and Main Result
	2.2.3 Discussion

	2.3 Discussion of Related Work
	2.4 Why s-ReProCS works: main ideas of our proof
	2.4.1 Why s-ReProCS with tj known works
	2.4.2 Why automatic subspace change detection and Automatic Simple-ReProCS works

	2.5 Proving Theorem 2.2 with assuming j = tj
	2.5.1 PCA in data-dependent noise with partial subspace knowledge
	2.5.2 Two simple lemmas from rrpcpperf
	2.5.3 Definitions and main claim needed for Theorem 2.2 and Corollary 2.3 with j=tj
	2.5.4 The three main lemmas needed to prove the main claim and their proofs

	2.6 Empirical Evaluation
	2.6.1 Synthetic Data
	2.6.2 Real Data: Background Subtraction

	2.7 Conclusions and Future Work
	2.8 References
	2.9 Appendix A: Proof of Theorem 2.2 or Corollary 2.3 without assuming tj known
	2.10 Appendix B: Proof of Theorem 2.7: PCA in data-dependent noise with partial subspace knowledge
	2.11 Appendix C: Proof of Theorem 2.7
	2.12 Appendix D: Proof of Lemma 2.24: high probability bounds on the sin theorem bound terms
	2.13 Appendix E: Proof of Projected CS Lemma
	2.14 Appendix F: Time complexity of s-ReProCS
	2.15 Appendix G: Preliminaries: Cauchy-Schwarz, matrix Bernstein and Vershynin's sub-Gaussian result

	3. NEARLY OPTIMAL ROBUST SUBSPACE TRACKING
	3.1 Introduction
	3.1.1 Notation
	3.1.2 Significance and novelty of our PCA result and its use to analyze Robust Subspace Tracking

	3.2 PCA in Data-Dependent Noise
	3.2.1 Problem Setting
	3.2.2 SVD solution and guarantee for it
	3.2.3 Application to PCA in Sparse Data-Dependent Noise (PCA-SDDN)
	3.2.4 Generalizations of Theorem 3.31

	3.3 Nearly Optimal Robust Subspace Tracking (NORST)
	3.3.1 Problem setting and algorithm design constraints
	3.3.2 Nearly Optimal Robust ST (NORST) via Recursive Projected Compressive Sensing (CS): main idea
	3.3.3 Identifiability and other assumptions
	3.3.4 Guarantees
	3.3.5 How slow subspace change (Assumption 3.37) enables improved outlier tolerance
	3.3.6 Understanding Statistical Right Incoherence
	3.3.7 Nearly Optimal Robust ST via ReProCS (NORST-ReProCS): details

	3.4 Related Work
	3.5 Extensions: subspace change at each time, subspace tracking without detection
	3.5.1 Subspace changing at each time
	3.5.2 NORST-NoDet: NORST without subspace change detection

	3.6 Proof of correctness of the NORST algorithm
	3.6.1 Main Lemmas
	3.6.2 Proof of the first two lemmas
	3.6.3 Proof of Lemma 3.48

	3.7 Empirical Evaluation
	3.8 Conclusions and Future Directions
	3.9 References
	3.10 Appendix A: Proofs for Sec. 3.2
	3.10.1 Proof of Theorem 3.31
	3.10.2 A useful corollary that follows from above proof
	3.10.3 Main idea of the proof of Corollary 3.43
	3.10.4 Concentration Bounds

	3.11 Appendix B: Proof of Theorem 3.39 and Corollary 3.40
	3.12 Appendix C: Proofs for Section 3.3: Time complexity derivation and Proof of Theorem 3.42
	3.12.1 Time complexity derivation
	3.12.2 Proof of Theorem 3.42 for NORST-NoDet

	4. SUBSPACE TRACKING FROM INCOMPLETE DATA IN THE PRESENCE OF OUTLIERS
	4.1 Introduction
	4.1.1 Notation
	4.1.2 Problem Statement
	4.1.3 Identifiability assumptions

	4.2 The NORST-miss algorithm and guarantees
	4.2.1 NORST-miss algorithm
	4.2.2 Main Result: noise-free ST-miss and MC
	4.2.3 Main Result – ST-miss and MC with noise
	4.2.4 Extensions of basic NORST-miss

	4.3 Detailed discussion of prior art
	4.4 Robust ST with missing entries
	4.5 Experimental Comparisons
	4.5.1 Parameter Setting for NORST
	4.5.2 Fixed Subspace, Noise-free data
	4.5.3 Changing Subspaces, Noisy and Noise-free Measurements
	4.5.4 Matrix Completion
	4.5.5 Real Video Data
	4.5.6 RST-miss and RMC

	4.6 Conclusions and Open Questions
	4.7 Appendix A: Proof of Theorem 4.59 and Corollary 4.61
	4.8 Appendix B: Proof of Corollary 4.66
	4.9 References

	5. FEDERATED OVER-AIR SUBSPACE TRACKING FROM INCOMPLETE AND CORRUPTED DATA
	5.1 Introduction
	5.2 Notation and Problem Formulation
	5.2.1 Notation
	5.2.2 ST with missing data (ST-miss)
	5.2.3 Robust ST-miss (RST-miss)
	5.2.4 Federated Over-Air Data Sharing Constraints and Iteration Noise

	5.3 ST from Missing Data (ST-miss)
	5.3.1 Proposed Algorithm
	5.3.2 Assumptions and Main Result
	5.3.3 Guarantee for piecewise constant subspace change
	5.3.4 Proof of Theorem 5.73 and 5.74
	5.3.5 Proof of Theorem 5.75

	5.4 Federated Over-Air Robust ST-Miss
	5.4.1 Dealing with mild asynchrony and channel fading
	5.4.2 Federated Over-Air PCA via the Power Method (PM)
	5.4.3 Fed-OA-RSTMiss: Problem setting
	5.4.4 Algorithm
	5.4.5 Guarantee for Fed-OA RST-miss
	5.4.6 Proof Outline

	5.5 Numerical Experiments
	5.5.1 Centralized STMiss
	5.5.2 Fedrated ST-Miss

	5.6 References
	5.7 Appendix A: Proof of Key Lemmas for Theorem 5.81
	5.8 Appendix B: Extensions of Theorem 5.73 and Theorem 5.81
	5.8.1 Generalization to detect and track larger subspace changes for centralized ST-miss

	5.9 Appendix C: Robust Subspace Tracking with Missing Data
	5.10 Appendix D: Convergence Analysis for FedPM
	5.10.1 Eigenvalue convergence
	5.10.2 The Noise Tolerant FedOA-PM, Algorithm, and Guarantee
	5.10.3 Proof of Theorem 5.91
	5.10.4 Numerical Verificaion of Theorem 5.91

	5.11 Appendix E: Preliminaries

	6. CONCLUSIONS AND FUTURE WORK

